

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 19,
Number 9, September 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering September 2006

Security in the Software Life Cycle
This article emphasizes how developers need to make additional,
significant increases in their processes, by adding structure and
repeatability to further the security and quality of their software.
by Joe Jarzombek and Karen Mercedes Goertzel

When Computers Fly, It Has to Be Right: Using SPARK
for Flight Control of Small Unmanned Aerial Vehicles
This article describes how SPARK, an annotated subset of the Ada
programming language, can help prove correctness of software
implementations.
by Dr. Ricky E. Sward, Lt. Col Mark J. Gerken, Ph.D., and 2nd Lt. Dan Casey

Application and Evaluation of Built-In-Test (BIT)
Techniques in Building Safe Systems
This article presents some of the goals and uses of BIT, as well as the
applications in providing a safe system.
by James A. Butler

Assessing Information Security Risks in the Software
Development Life Cycle
This article focuses on how to apply simple risk assessment
techniques to the software development life cycle process.
by Dr. Douglas A. Ashbaugh

Increasing the Likelihood of Success of a Software
Assurance Program
This article discusses how investing the resources in a software
assurance program during the design, code, and test phases of a
software development program will significantly reduce the likelihood
of costly mishaps, failures, or system breeches during system operations
and support.
by Steven F. Mattern

4

10

15

21

26

3

14

20

25

30

31

D eD e p ap a rr t m e n t st m e n t s

From the Sponsor

Web Sites

Coming Events

Letter to the Editor

SSTC 2007

BackTalk

SoftwSoftwaarree AssurAssuraancence
CrossTalk

76 SMXG
CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Diane Suchan

Joe Jarzombek

Jeff Schwalb

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 25.

517 SMXS/MDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

September 2006 www.stsc.hill.af.mil 3

From the Sponsor

In an era riddled with asymmetric cyber attacks, claims about system reliability,
integrity and safety must also include provisions for built-in security of the enabling

software. To facilitate changes and adoption of requisite practices, the Departments of
Homeland Security (DHS) and Defense (DoD) are investing in Software Assurance by
partnering with software practitioners in industry, government, and academia to
increase the availability and use of tools, knowledge, and guidance that will help
improve the security and quality of the software used in national security systems and

critical infrastructure.
How is Software Assurance influencing our software community of practice and addressing

relevant needs? Over time, we learn to do what needs to change, and we share practices. From
the users’ perspective, we have learned that development and acquisition practices should only
be categorized as best practices if they contribute to the delivery of safe and secure products, sys-
tems and services. Developers have continued questioning their assumptions about how soft-
ware should be built. They have a growing understanding that functional correctness must be
exhibited not only when the software executes under anticipated conditions but also when it is
subjected to unanticipated, hostile conditions. Acquirers have a better understanding that more
scrutiny is needed of their supply chains to reduce the risk exposures being passed to users of
software and software-intensive systems. Interaction among practitioners continually refines and
develops the elements of practice. This is why relevant knowledge and skills have limited shelf-
lives that prompt competency refresh requirements.

An organization's software community of practice is critical to its success. The community
may exist informally within and across business units and projects and often across organiza-
tional boundaries. To gain the most leverage, it maintains links outside the organization to
strengthen its knowledge base. Communities of practice are organizational assets because of the
knowledge they steward at their core and through the learning they inspire at their boundaries.
The learning potential of an organization resides in the interaction of cores and boundaries in
constellations or clusters of different communities of practices. Indeed, software assurance is
derived from the application of integrated processes and practices from multiple disciplines,
requiring software practitioners to interact with other communities of practice (such as systems
engineering, program management, security, etc.).

Our software community of practice develops resources such as shared learning and prac-
tices. Several organizations facilitate the capture and transfer of knowledge critical to our soft-
ware community practitioners. CrossTalk functions as one of our software community’s key
conduits for transferring knowledge, and the DHS BuildSecurityIn Web site is evolving as an
online resource at <http://BuildSecurityIn.us-cert.gov>.

The DHS Software Assurance Program provides a framework to shape a comprehensive
strategy that addresses people, process, technology and acquisition throughout the software life
cycle. Our efforts seek to shift the paradigm away from patch management and to achieve a
broader ability to routinely develop and deploy trustworthy software products; contributing to
the production of higher quality, more secure software. Through hosting and co-hosting vari-
ous forums, we have leveraged collaborative efforts of public-private working groups. DHS ini-
tiatives, such as a software assurance common body of knowledge, guides for developers and
acquisition managers, and the BuildSecurityIn Web site will continue to evolve and provide prac-
tical guidance on how to improve the quality, reliability, and security of software.

This DHS-sponsored issue of CrossTalk addresses not only the value of software assur-
ance, but also various methods in achieving it. I hope readers will take the time to understand
and apply the principles and techniques. I encourage everyone to discover more about our
Software Assurance efforts and learn more about proven security practices by reviewing our
DHS BuildSecurityIn Web site and joining others in our expanding software assurance commu-
nity of practice.

Software Assurance: Highlighting Changes Within
Our Software Community of Practice

Joe Jarzombek, Project Management Professional (USAF Lt. Col., Retired)
Director for Software Assurance

National Cyber Security Division
Department of Homeland Security

4 CROSSTALK The Journal of Defense Software Engineering September 2006

In an era riddled with asymmetric cyber
attacks, claims about system reliability,

integrity and safety must also include
provisions for built-in security of the
enabling software. The Department of
Homeland Security (DHS) Software
Assurance Program has undertaken to
partner with software practitioners in
industry, government, and academia to
increase the availability and use of tools,
knowledge, and guidance that will help
improve the security and quality of the
software they produce. In addition to its
BuildSecurityIn Web portal [1] and
Software Assurance Common Body of
Knowledge [2], the DHS Software
Assurance Program is publishing Security
in the Software Life Cycle: Making Application
Development Processes – and Software Produced
by Them – More Secure [3] (freely down-
loadable from the DHS BuildSecurityIn
portal).

Background
Software is ubiquitous. Many functions in
the public and private sectors depend on
software to perform correctly even dur-
ing times of crisis despite attempts to
subvert or compromise its functions.
Software is relied on to handle sensitive
and high-value data on which users’ pri-
vacy, livelihoods, and lives depend. Our
national security and homeland security
increasingly depend on ever more com-
plex, interconnected, software-intensive
information systems that use Internet-
exposed networks as their common data
bus. Software enables and controls sys-
tems that run the nation’s critical infra-
structure: electrical power grids; water
treatment and distribution systems; air

traffic control and transportation signal-
ing systems; nuclear, biological, and
chemical laboratories and manufacturing
plants; medical and emergency response
systems; financial systems; and other crit-
ical functions, such as law enforcement,
criminal justice, immigration, and,
increasingly, voting. Software also pro-

tects other software. The majority of fil-
tering routers, firewalls, encryption sys-
tems, and intrusion detection systems are
implemented, at least in large part,
through the use of software.

Perhaps because of this dependence,
nation-state adversaries, terrorists, and
criminals have joined malicious and
recreational attackers in targeting this
growing multiplicity of software-inten-
sive systems. These new threats are both
better resourced and highly motivated to
discover and exploit vulnerabilities in
software. The National Institute of
Standards and Technology’s (NIST) spe-
cial publication 800-42, Guideline on
Network Security Testing [4] sums up the
challenge: Many successful attacks

exploit errors (bugs) in the software code
used on computers and networks. This is
why software security matters. As more
and more critical functions become
increasingly dependent on software, that
software becomes an extremely high-
value target.

The objective of Security in the Software
Life Cycle is to inform developers about
existing processes, methods, and tech-
niques that can help them to specify,
design, implement, configure, update,
and sustain software that is able to
accomplish the following:
1. Resist or withstand many anticipated

attacks.
2. Recover rapidly and mitigate damage

from attacks that cannot be resisted
or withstood.
The key to secure software is the

development process used to conceive,
implement, deploy, and update/sustain it.
A security-enhanced software development
life cycle process includes practices that
not only help developers root out and
remove exploitable defects (e.g., vulnera-
bilities) in the short term, but also, over
time, increase the likelihood that such
defects will not be introduced in the first
place.

Security in the Software Life Cycle also
addresses the risks associated with the
software supply chain, including risks
associated with selection and use of com-
mercial off-the-shelf and open source
software components, software pedigree
(or more accurately the inability to deter-
mine software pedigree), and outsourcing
of software development and support to
offshore organizations and unvetted
domestic suppliers.

Security in the Software Life Cycle

Karen Mercedes Goertzel
Booz Allen Hamilton

As a freely downloadable reference document, “Security in the Software Life Cycle: Making Application
Development Processes – and Software Produced by Them – More Secure” presents key issues in the security of soft-
ware and its development processes. It introduces a number of process improvement models, risk management and
development methodologies, and sound practices and supporting tools that have been reported to help reduce the vul-
nerabilities and exploitable defects in software and diminish the possibility that malicious logic and trap doors may
be surreptitiously introduced during its development. No single practice, process, or methodology offers the universal
silver bullet for software security. “Security in the Software Life Cycle” has been compiled as a reference document
with practical guidance intended to tie it together and inform software practitioners of a number of practices and
methodologies from which they can evaluate and selectively adopt to reshape their development processes to increase not
only the security but also the quality and reliability of their software applications, services, and systems, both in devel-
opment and in deployment.

Software Assurance

“The key to secure
software is the

development process
used to conceive,

implement, deploy, and
update/sustain it.”

Joe Jarzombek
Department of Homeland Security

Security in the Software Life Cycle

September 2006 www.stsc.hill.af.mil 5

Many security defects in software
could be avoided if developers were bet-
ter equipped to recognize the security
implications of their design and imple-
mentation choices. Quality initiatives that
reduce the number of overall defects in
software are a good start, as many of
those defects are security-related vulnera-
bilities. However, quality-based methods
that focus only on improving the correct-
ness of software seldom result in secure
software. This is because in quality terms,
correctness means correctness of the soft-
ware’s operation under anticipated, normal
conditions.

Attacks on software and its environ-
ment typically create unanticipated,
abnormal conditions. Moreover, rather
than targeting single defects, attackers
often leverage combinations of what
seem to be correct functionalities and
interactions in software. Individually,
none of those functionalities or interac-
tions might be problematical. Only when
they are combined in an unexpected or
unintended way does an exploitable vul-
nerability manifest. To a great extent,
software security relies on the developer’s
ability to anticipate the unexpected.

A software security program must
include training and educating developers
to do exactly that, and to recognize the
security implications not only of simple
defects, but also of abnormal series and
combinations of functions and interac-
tions within their software, and between
their software and other entities.
Developers need to work within a devel-
opment process framework that not only
allows but also encourages them to ana-
lyze their software and recognize the
security vulnerabilities that manifest from
seemingly minor individual defects and
coding errors, as well as their larger
design and implementation choices.

Security Enhancement of the
Software Development Life Cycle
Security enhancement of development life
cycle processes and practices requires a
shift in emphasis and an expansion of
scope of existing development activities
so that security is given equal importance
as other desirable properties, such as
usability, interoperability, reliability, safe-
ty, and performance. These shifts in
emphasis and scope will affect the life
cycle in the following ways:
1. Requirements. The review of the

software’s functional requirements
will include a security vulnerability
and risk assessment that forms the
basis for capturing the set of general

non-functional security requirements
(often stated in terms of constraints
on functionality) or derived security
provisions (not explicitly specified in
customer documents) that will miti-
gate the identified risks. These high-
level, non-functional/constraint re-
quirements will then be translated into
more specific requirements for func-
tionalities and functional parameters
that otherwise may not have been
included in the software specification.

2. Design and implementation.
Design assumptions and choices that
determine how the software will oper-
ate and how different modules/com-
ponents will interact should be ana-
lyzed and adjusted to minimize the
exposure of those functions and
interfaces to attackers. Implemen-
tation choices will start with selection
of only those languages (or language
constructs), libraries, tools, and
reusable components that are deter-
mined to be free of vulnerabilities, or
for which an effective vulnerability
mitigation can be realistically imple-

mented. Bugs in source code must be
flagged not just when they result in
incorrect functionality, but when oth-
erwise correct functionality is able to
be corrupted by unintended and
unusual inputs or configuration para-
meters.

3. Reviewing, evaluating, and testing.
Security criteria will be generated for
every specification, design, and code
review, as part of the software/system
engineering evaluation and selection of
acquired and reused components, and
as part of the software’s unit and inte-
gration test plans. Life cycle phase-
appropriate security reviews and/or
tests will establish whether all software
artifacts (e.g., code, documentation)
have satisfied their security exit criteria
at the end of one life cycle phase
before development is allowed to
move into the next phase.

4. Distribution, deployment, and
support. Distribution will be preced-
ed by careful code clean-up to remove
any residual security issues (e.g.,
debug hooks, hard-coded credentials).
Preparation for distribution will also
include documenting the secure con-
figuration parameters that should be
set when the software is installed;
these include both parameters for the
software itself and for any compo-
nents of its execution environment
(e.g., file system and Web server
access controls, application firewall)
that it will rely upon to protect it in
deployment. Secure by default distribu-
tion configurations and trustworthy
distribution mechanisms will be
adopted. Ongoing, post-deployment,
vulnerability and threat assessments,
and forensic analyses of successful
attacks will be performed for the soft-
ware and its environment. New
requirements to be satisfied in future
releases will be formulated based on
the assessment and analysis findings.

Risk-Driven Requirements
Engineering
It is easier to produce software that can
resist and recover from attacks when risk
management activities and checkpoints
are integrated throughout the software
life cycle. A key component of risk-dri-
ven software development occurs at the
beginning of the development process:
threat modeling. To identify and priori-
tize mitigation steps that must be taken,
developers first need to recognize and
understand the threats to their software,
including the threat agents, anticipated
attack patterns, vulnerabilities likely to be
exploited, and assets likely to be targeted,
and they need to assess the level of risk
that the threat will occur and its potential
impact if it does. Several freely down-
loadable methodologies have emerged to
support the developer in modeling
threats to applications and other soft-
ware-intensive systems, including the fol-
lowing:
• Microsoft’s ACE (Application

Consulting and Engineering) Threat
Analysis and Modeling (also called
Threat Modeling Version 2.0) [5].

• European Union Consultative Objec-
tive Risk Analysis System (CORAS)
[6, 7, 8] and Research Council of
Norway Model-Driven Development
and Analysis of Secure Information
Systems (SECURIS) [9, 10].

• Practical Threat Analysis (Technolo-
gies’ Calculative Threat Modeling
Methodology) [11].

“A key component of
risk-driven software

development occurs at
the beginning of the
development process:

threat modeling.”

Software Assurance

6 CROSSTALK The Journal of Defense Software Engineering September 2006

• Trike: A Conceptual Framework for
Threat Modeling [12].

• National Aeronautics and Space
Administration Software Security
Assessment Instrument [13, 14].

• Visa USA Payment Application Best
Practices [15].
A number of other system-level

methodologies and tools are also in use
for risk analysis of software-intensive
systems, including NIST’s Automated
Security Self Evaluation Tool, Carnegie
Mellon University’s Operationally
Critical Threat Asset and Vulnerability
Evaluation-Secure, and Siemens/Insight
Consulting Central Computer and
Telecommunications Agency Risk
Analysis and Management Method.
These methodologies are also introduced
in Security in the Software Life Cycle.

Security-Enhanced Process
Models and Development
Methodologies
The use of repeatable process improve-
ment models has been demonstrated to
improve the efficiency and adaptability
of software development life cycle activ-
ities and the overall quality of software
by reducing the number and magnitude
of errors. The Software Engineering
Institute’s Capability Maturity Model®

(CMM®) and General Electric’s Six
Sigma are the most widely used process
improvement models. A number of
CMM variants have been tailored for
specific communities or problem spaces,
e.g., CMM Integration (CMMI®), inte-
grated-CMM (iCMM), and System
Security Engineering (SSE)-CMM, which
is also an international standard [16].

Beyond the SSE-CMM, a number of
efforts have been undertaken to adapt or
extend existing maturity models or define
new process improvement models that
have security-enhancement as their main
objective. These include the following:
• Safety and Security Extensions to

CMMI/iCMM [17].
• Revised International Organization

for Standardization/International
Electrotechnical Commission (ISO/
IEC) Standard 15026 System and
Software Assurance, which adds securi-
ty assurance activities to ISO/IEC
15288 system life cycle and ISO/IEC
12207 software life cycle processes.

• Microsoft Security Development
Lifecycle (SDL) [18, 19].

• Comprehensive, Lightweight Appli-
cation Security Process (CLASP) [20].

• Carnegie Mellon University Software
Engineering institute (SEI) Secure
Team Software ProcessSM (TSPSM

Secure) [21].
The CMM and ISO/IEC process

models are defined at a higher level of
abstraction than SDL and CLASP, which
bridge the abstraction gap between
CMM-level models and software devel-
opment methodologies. It is quite possi-
ble to implement both a security-
enhanced CMMI or iCMM as an overar-
ching framework in which SDL or
CLASP processes can be executed. SDL
or CLASP could then itself provide a
framework in which life cycle, phase-spe-
cific, security-enhanced methods such as
Model-Driven Architecture (MDA) or
Aspect-Oriented Programming (AOP)
could be employed. Indeed, these higher-
level models are intended to be methodol-
ogy-neutral and to accommodate develop-
ment using any of a variety of method-
ologies.

Using Familiar Development
Methodologies in Ways that
Improve Software Security
Unlike process improvement models,
software development methodologies
are specific in purpose and applicability.
Efforts have been made to use existing
methodologies in ways that are expressly
intended to support the engineering of
security functionality in software. In a
few cases, efforts have been made to
adapt these methodologies to expressly
improve the security of the software
produced.

MDA
Defined by the Object Management
Group (OMG), MDA automatically
transforms Unified Modeling Language
(UML) models into platform-specific
models and generates a significant por-
tion of the application source code (the
eventual goal is to generate whole appli-
cations). By using MDA, developers need
to write less code, and the code they do
write can be less complex. As a result,
software contains fewer design and cod-
ing errors (including errors with security
implications). Researchers outside OMG
are looking at ways to add security to
MDA by combining it with elements of
Aspect-Oriented Modeling or by defining
new UML-based security modeling lan-
guages to be used in producing MDA-
based secure design models. Both
Interactive Objects’ ArcStyler [22] and

IBM/Rational’s Software Architect [23]
support MDA-based security modeling,
model checking, and automatic code gen-
eration from security models.

Object-Oriented Modeling
With UML
Unlike security functions, security proper-
ties in object-oriented modeling are treat-
ed as generic nonfunctional requirements
and thus do not require specific security
artifacts. UML, which has become the de
facto standard language for object-oriented
modeling, lacks explicit syntax for model-
ing the misuse and abuse cases that can
help developers predict the behavior of
software in response to attacks. Rec-
ognizing these omissions, some UML
profiles have been published that add
expressions for modeling security func-
tions, properties, threats and countermea-
sures, etc., in UML. SecureUML [24] pro-
vides extensions to support modeling of
access controls and authorization.
UMLSec [25] adds both access control/
authorization modeling extensions and
support for vulnerability assessment of
UML models. The CORAS UML profile
for security assessment [26], which has
been adopted as a recommended standard
by the OMG, is the most directly applica-
ble to software security needs as it pro-
vides UML extensions for modeling
threats and countermeasures.

Aspect-Oriented Software
Development (AOSD)
Object-oriented development requires
security properties and functions to be
associated with each individual object in
which that property/function must be
exhibited. Security properties such as non-
subvertability and functions such as code
signature validation are crosscutting, i.e.,
they are required in multiple objects. In
object-oriented development, the devel-
oper would have to replicate and propa-
gate the expressions of such cross-cutting
security properties and functions to every
object to which they pertain. This repre-
sents an unnecessarily high level of effort,
both to initially specify and even more to
make changes to cross-cutting security
functions and properties, because such
changes would also need to be replicated,
propagated, and tracked.

AOM and Design extend the expres-
sions possible in object-oriented model-
ing so that cross-cutting properties and
functions are able to be expressed only
once in a single modular component of
the software model and design specifica-
tion. This cross-cutting component is
then referred to by all the components/

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

Security in the Software Life Cycle

objects to which the property/ function
pertains. AOP allows the developer to
write and maintain the cross-cutting com-
ponent at a single location in the code.
The AOP tools then automatically repli-
cate and propagate that cross-cutting
code to all appropriate locations through-
out the code base. This automated
approach reduces the potential that the
developer may inadvertently omit the
cross-cutting code from some compo-
nents/objects.

Agile Methods and Secure Software
Can Agile development produce secure
software? As with structured develop-
ment methodologies, Agile methods seek
to promote development of high-quality
software. With the exception of Lean
Development, the collection of method-
ologies that falls under the umbrella of
Agile Methods all share a commitment to
the core principles of the Agile Manifesto
[27]. According to the Agile Manifesto,
Agility is enhanced by continuous attention to
technical excellence and good design.
Proponents often cite key practices in
many agile methods that help reduce the
number of exploitable defects that are
introduced into software practices such as
enforced coding standards, simple
designs, pair programming, continuous
integration, and test-driven development
(also known as continuous testing).

It has been suggested that Agile meth-
ods can support risk-driven software
engineering if – and this a very big if – the
requirements-based, functional test-dri-
ven development approach that under-
pins all Agile methods is extended to
include the following:
• Redefine the customer (who drives all

response to change) to include the
stakeholders such as risk managers,
certifiers, and accreditors responsible
for enforcing security policy and pre-
venting and responding to attacks on
software.

• Expand agile testing to accommodate
both requirements-based and risk-
based tests (see Software Security
Testing).
Security in the Software Life Cycle includes

an extensive discussion of whether, and,
if so, how and when Agile methods can
be used for secure software development
without violating the Agile Manifesto’s
core principles.

Formal Methods and
Secure Software
Formal methods use mathematical proofs
and precise specification and verification
methods to clarify the expression and

understanding of software requirements
and design specifications. The strict math-
ematical foundations of formal methods
create a basis for positive assurance that
the software’s specifications are consis-
tent with its formally modeled properties
and attributes.

Formal methods have been used suc-
cessfully to specify and prove the correct-
ness and internal consistency of security
function specifications (e.g., authentica-
tion, secure input/output, mandatory
access control) and security-related trace
properties (e.g., secrecy). However, to
date, none of the widely used formal lan-
guages or techniques are explicitly devot-
ed to specification and verification of non-
trace security properties, such as non-sub-

vertability or correct, predictable behavior
in the face of unanticipated changes in
environment state.

Software Security Testing
Software security testing verifies that the
software produced is indeed secure. It
does this by observing the way in which
software systems and the components
they contain behave in isolation and as
they interact. The main objectives of soft-
ware security testing are: 1) Detection of
security defects, coding errors, and other
vulnerabilities including those that mani-
fest from complex relationships among
functions, and those that exist in obscure
areas of code, such as dormant functions;
2) demonstration of continued secure
behavior when subjected to attack pat-
terns; and 3) verification that the software
consistently exhibits its required security
properties and functional constraints
under both normal and hostile condi-
tions. However, a security requirements
testing approach alone demonstrates only
whether the stated security requirements

have been satisfied, regardless of whether
those requirements were adequate. Most
software specifications do not include
negative and constraint requirements such
as no failure may result in the software dumping
core memory or the software must not write input
to a buffer that is larger than the memory allo-
cated for that buffer.

Risk-based testing takes into account
the fact that during the time between
requirements capture and integration test-
ing, the threats to which the software will
be subject are likely to have changed. For
this reason, risk-based testing includes
subjecting the software to attack patterns
that are likely to exist at time of deploy-
ment, not just those that were likely at
time of requirements capture. In practical
terms, many of the same tools and tech-
niques used for functional testing will be
useful during security testing. The key dif-
ference will be the test scenarios exercised
in risk-based tests. The software’s security
test plan should include test cases (includ-
ing cases based on abuse and misuse
cases) that exercise areas and behaviors
that may not be exercised by functional,
requirements-based testing. These securi-
ty test cases should attempt to demon-
strate the following:
• The software behaves consistently and

securely under all conditions, both
expected and unexpected.

• If the software fails, the failure does
not leave the software, its data, or its
resources exposed to attack.

• Obscure areas of code and dormant
functions cannot be exploited or com-
promised.

• Interfaces and interactions among
components at the application, frame-
work/middleware, and operating-sys-
tem levels are consistently secure.

• Exception and error handling resolve
all faults and errors in ways that do
not leave the software, its resources,
its data, or its environment vulnerable
to unauthorized modification (disclo-
sure) or denial of service.

Security analysis and testing are most
effective when a multifaceted approach is
used that employs as wide a variety of
techniques and technologies as time and
resources allow. These techniques may
include the following:
• WWhhiittee bbooxx security reviews and

tests. Performed on source code,
white box testing techniques include
code security review (direct code
analysis, property-based testing);
source code fault injection with fault
propagation analysis; and automated
compile-time detection.

• Black box security test techniques.

September 2006 www.stsc.hill.af.mil 7

“Security analysis
and testing are most

effective when a
multifaceted approach
is used that employs
as wide a variety of

techniques and
technologies as time and

resources allow.”

Software Assurance

8 CROSSTALK The Journal of Defense Software Engineering September 2006

Targeting individual binary compo-
nents and/or the software system as a
whole, black box techniques are the
only testing option when source code
is not available. Black box techniques
include software penetration testing,
security fault injecting of binaries,
fuzz testing, and automated vulnera-
bility scanning.

• Reverse engineering. Disassembly
and decompilation generate, in the
former case, assembler code, and in
the latter, source code – both of
which can then be analyzed for secu-
rity-relevant implementation errors
and vulnerabilities. Decompiled
source code can be subjected to stan-
dard white box security tests and
tools. Reverse-engineering is often
more difficult and time-consuming
than other software security test tech-
niques; many commercial software
products use obfuscation techniques
to deter reverse-engineering. Like for-
mal methods, the level of effort
required makes reverse-engineering
practical only for the examination of
high-consequence, high-confidence,
or high-risk components. Even then,
there is no 100 percent guarantee of
success.
The DHS-funded NIST Software

Assurance Metrics and Tool Evaluation
program [28] has developed a taxonomy
of security testing tool categories that
include a database of profiles of com-
mercial and open source tools within each
category. This database is being used to
capture the results of tool evaluations
and measurements of tool effectiveness,
and it is used to conduct a gap analyses of
tool capabilities and methods.

Both DHS and the DoD continue to
dedicate resources toward achieving soft-
ware assurance [29], and individual orga-
nizations can implement practices today
to contribute toward software assurance
in the near future.

Sound Practices for Security
Enhancing Life Cycle Activities
Practitioners and program managers need
to first understand what secure software is
[30]. Appendix G of Security in the Software
Life Cycle presents a collection of security
principles and sound practices that have
been expounded on by respected practi-
tioners of secure software development
in the private, public, and academic sec-
tors, in the U.S. and abroad. These princi-
ples and practices enable the insertion of
security considerations into all phases of
the software life cycle. Appendix G also
describes practices that span life cycle

phases such as secure configuration man-
agement, security-minded quality assur-
ance, security training and education of
developers, and selection and secure use
of frameworks, platforms, development
tools, libraries, and languages. Developers
who start applying these practices today
should start to see improvements in their
software’s security, as well as its quality.
This is true even if the organizations they
work for never commit to adopting a
security-enhanced, structured develop-
ment methodology or process improve-
ment model.

Summary
With its increasing exposure and criticali-
ty, software has become a high-value tar-
get not just for malicious and recreation-
al hackers, but for highly motivated, well-
resourced cyber-terrorists, cyber-crimi-

nals, and information warfare adversaries.
At the same time, user expectations (real
or perceived) that new functionality can
be delivered near-instantaneously has dri-
ven software suppliers to adopt ever-
shortening release schedules and agile
development methods that do not allow
sufficient time for careful specification,
design, coding, and testing. As a result,
the software they produce is inordinately
convoluted and complex, with seemingly
infinite possible internal states and a mul-
tiplicity of flaws and defects. All of these
factors make software increasingly vul-
nerable to the intensifying threats that
surround it.

Developers need to start questioning
their assumptions about how software
should be built. They need to understand

that functional correctness must be
exhibited not only when the software exe-
cutes under anticipated conditions, but
also when it is subjected to unanticipated,
hostile conditions. Security in the Software
Life Cycle provides developers with infor-
mation that can help them achieve a two-
phase security enhancement of their soft-
ware processes. For the first phase,
Appendix G describes sound practices
and principles that developers can begin
to apply immediately throughout the life
cycle. These practices and principles are
intended to raise the floor, enabling devel-
opers to achieve a basic level of security
in their software processes. The security-
enhanced process improvement models
and life cycle methodologies in the rest of
the document are intended to help devel-
opers raise the ceiling over the longer term
by making additional, significant increases
in the security of their processes and by
adding structure and repeatability to fur-
ther security-enhancement of those
processes.u

References
1. United States. Dept. of Homeland

Security. BuildSecurityIn Portal. Na-
tional Cyber Security Division
<https://buildsecurityin.us-cert.
gov/>.

2 Redwine, Jr., Samuel T. ed. Software
Assurance: A Guide to the Common
Body of Knowledge to Produce,
Acquire, and Sustain Secure Software
(DRAFT Version 1.1). Washington,
D.C.: Department of Homeland
Security, July 2006 <https://build
securityin.us-cert.gov/>.

3 Goertzel, K.M., et al. Security in the
Software Life Cycle: Making Applica-
tion Development Processes – and
Software Produced by Them – More
Secure (DRAFT Version 1.1). Wash-
ington, D.C.: Department of Home-
land Security, July 2006 <https://
buildsecurityin.us-cert.gov/>.

4. National Institute of Standards and
Technology. Guideline on Network
Security Testing. Special Publication
800-42. Oct. 2003 (intended solely as a
source of information and guidance,
not as a proposed standard, directive,
or policy from DHS; descriptions of
processes, methodologies, and tech-
nologies containing this document
should not be interpreted as formal
endorsements by DHS) <http://csrc.
nist.gov/publications/nistpubs/800
-42/NIST-SP800-42.pdf>.

5. Microsoft. Microsoft Threat Analysis
& Modeling. v2.0 BETA2 <www.
microsoft.com/downloads/details.asp

“... software has
become a high-value

target not just for
malicious and

recreational hackers, but
for highly motivated,

well-resourced
cyber-terrorists,

cyber-criminals, and
information warfare

adversaries.”

x?FamilyID=570dccd9-596a-44bc
-bed7-1f6f0ad79e3d&DisplayLang
=en>.

6. CORAS. A Platform for Risk Analysis
of Security Critical Systems <www2.
nr.no/coras/>.

7. CORAS. The CORAS Project
<http://coras.sourceforge.net/>.

8. CORAS. A Tool-Supported Method-
ology for Model-Based Risk Analysis
of Security Critical Systems <http://
heim.ifi.uio.no/~ketils/coras/>.

9. SECURIS. Model-Driven Develop-
ment and Analysis of Secure
Information Systems <www.sintef.no/
content/page1_1824.aspx>.

10. The SECURIS Project. Model-Driven
Development and Analysis of Secure
Information Systems <http://heim.
ifi.uio.no/~ketils/securis/index.htm>.

11. PTA Technologies. Practical Threat
Analysis for Securing Computerized
Systems <www.ptatechnologies.com>.

12. Trike. A Conceptual Framework for
Threat Modeling <http://dymaxion.
org/trike/> and <www.octotrike.org/>.

13. National Aeronautics and Space Ad-
ministration. Reducing Software Se-
curity Risk <http://rssr.jpl.nasa.gov>.

14. “Reducing Software Security Risk
through an Integrated Approach.”
University of California-Davis
<http ://sec lab.cs.ucdav is.edu/
projects/testing/>.

15. “Visa USA Cardholder Information
Security Program: Payment Appli-
cations.” Visa <http://usa.visa.com/
bus ine s s/acce p t ing_v i s a/ops_
risk_management/cisp_payment_
applications.html>.

16. International Standard ISO/IEC
21827, System Security Engineering
(SSE)-CMM® <http://www.issea.org>
and <http://www.SSE-CMM.org>.

17. Federal Aviation Administration
Integrated Process Group. Safety and
Security Extensions to Integrated
Capability Maturity Models. Washing-
ton D.C.: Sept. 2004 <http://faa.
g ov/ ipg/news/docs/Safe tyand
Security Ext-FINAL.pdf>.

18. Lipner, Steve, and Michael Howard.
“The Trustworthy Computing Security
Development Lifecycle.” Microsoft
<http://msdn.microsoft.com/secur
ity/sdl>.

19. Howard, Michael. “How Do They Do
It?: A Look Inside the Security
Development Lifecycle at Microsoft.”
MSDN Magazine: The Microsoft
Journal for Developers. 20.11 (Nov.
2005) <http://msdn.microsoft.com/
msdnmag/ i s sues/05/11/SDL/
default.aspx>.

20. “Comprehensive, Lightweight Appli-
cation Security Process.” Secure
Software <https://securesoftware.
custhelp.com/cgi-bin/securesoftware.
cfg/php/enduser/doc_serve.php?2=
CLASP>.

21. SEI Software Process (TSP) for Secure
Systems Development <www.sei.cmu.
edu/espltsp-secure.presentation/>.

22. “ArcStyler Overview.” Interactive
Objects <www.interactive-objects.
com/products/arcstyler-overview>.

23. “Rational Software Architect.” IBM
<www.306.ibm.com/software/awd
tools/architect/swarchitect/>.

24. Lodderstedt, Torsten. “Model Driven
Security from UML Models to Access
Control Architectures.” Diss. Albert-
Ludwigs-Universität, 2003 <http://
deposit.ddb.de/cgi-bin/dokserv?

idn=971069778&dok_var=d1&dok_
ext=pdf&filename=971069778.pdf>.

25. UMLsec <http://www4.in.tum.de/~
umlsec/>.

26. “The CORAS UML Profile.” CORAS
<http://coras.source-forge.net/uml_
profile.html>.

27. Agile Alliance. “Manifesto for Agile
Software Development.” Agilemani-
festo <http://agilemanifesto.org/>.

28. National Institute of Standards &
Technology. “Software Assurance
Metrics and Tool Evaluation.”
<http://samate.nist.gov/ index.php>.

29. “Software Assurance.” Wikipedia
<http://en.wikipedia.org/wiki/
software-assurance>.

30. Goertzel, K.M. “What Is Secure
Software?” IA Newsletter (Summer
2006) <http://iac.dtic.mil/iatac>.

About the Authors

Security in the Software Life Cycle

September 2006 www.stsc.hill.af.mil 9

Karen Mercedes Goertzel
is a software security sub-
ject-matter expert sup-
porting the director of
the Department of Home-
land Security’s Software

Assurance Program, and has provided
support to the Department of Defense’s
Software Assurance Tiger Team. She
was project manager for the Defense
Information Systems Agency Appli-
cation Security Support Task, and cur-
rently leads the team developing the
National Institute of Standards and
Technology’s special publication 800-95,
Guide to Secure Web Services. In addition to
software assurance and application secu-
rity, Goertzel has extensive experience in
trusted systems and cross-domain infor-
mation sharing solutions and architec-
tures, information assurance (IA) archi-
tecture and cyber security architecture,
risk management, and mission assur-
ance. She has written and spoken exten-
sively on security topics and IA topics
both in the United States and abroad.

Booz Allen Hamilton
8283 Greensboro DR
H5061
McLean,VA 22102
Phone: (703) 902-6981
Fax: (703) 902-3537
E-mail: goertzel_karen@bah.com

Joe Jarzombek is the
Director for Software
Assurance in the De-
partment of Homeland
Security (DHS) National
Cyber Security Division.

He leads government interagency
efforts with industry, academia, and
standards organizations to shift the
security paradigm away from patch man-
agement by addressing security needs in
work force education and training,
research and development (especially
diagnostic tools), and development and
acquisition practices. After retiring from
the U.S. Air Force as a Lt. Col. in pro-
gram management, Jarzombek worked
in the cyber security industry as vice
president for product and process engi-
neering. He later served in two software-
related positions within the Office of
the Secretary of Defense prior to
accepting his current DHS position. As
a Project Management Professional,
Jarzombek has spoken extensively on
measurement, software assurance, and
acquisition topics. He encourages fur-
ther review of DHS-sponsored software
assurance efforts via the BuildSecurityIn
Web site.

National Cyber Security Division
Department of
Homeland Security
Phone: (703) 235-5126
Fax: (703) 235-5962
E-mail: joe.jarzombek@dhs.gov

10 CROSSTALK The Journal of Defense Software Engineering September 2006

In recent years, we have seen small
Unmanned Aerial Vehicles (UAVs)

emerge onto the battlespace. These small
UAVs, which weigh less than 50 pounds,
carry five to 10 pounds of payload, have
mission endurances of about one hour,
and field missions to support tactical sur-
veillance and reconnaissance operations.
As the number of missions for these
small UAVs increases, more reliance will
be placed on the computer systems that
will control these aircraft. It is already
possible for a computer program to cre-
ate a flight plan for a UAV and place the
craft in an orbit to observe an item of
interest. Flight control computer pro-
grams are safety critical because errors in
these programs could result in the loss of
the UAV or cause damage to buildings
and/or people on the ground [1].

Because of the critical nature of this
software, development processes that
result in high-integrity software (software
systems that have a very low probability
of failure) [1] must be used. Verification
and validation (V&V) is often an impor-
tant part of these processes. However,
V&V of a safety-critical computer pro-
gram can consume up to 50 percent of
the development time [2]. One approach
to reuse dedicated V&V schedule time
while still assuring software quality is to
use an annotated programming language.
For example, the SPARK programming
language and its associated tools increase
the quality of software developed while

reducing overall development time [3, 4].
This approach to software development
can easily become a valuable tool when
dealing with safety-critical systems. The
SPARK language, which is a commercial
product available from Praxis High
Integrity Systems1, is ideal for systems
such as UAV flight planning software.
The SPARK language has been used on
many successful software development
projects such as the C-130J [4] and is the
language we have used on our UAV pro-
ject. SPARK is an annotated language
similar to the annotated Ada language [5]
and the Larch annotated language for C
[6]. The annotations in SPARK create
extra work for the development team, but
it has been shown the return on time
investment can be as high as an 80 per-
cent reduction in testing costs [4].

This article briefly discusses the
SPARK programming language and
development process. We examine a safe-
ty critical software example developed
for small UAVs developed in a senior-
level computer science course at the Air
Force Academy. We elucidate the SPARK
process by examining a small section of
the UAV control software dedicated to
orbital control.

Background
SPARK is an annotated subset of the
Ada programming language, and every
SPARK program can be compiled by an
Ada compiler. However, SPARK includes

several restrictions and rules governing
the use of various programming con-
structs. These rules not only serve to
simplify the V&V process, but also have
a secondary benefit of helping assure
good coding practice. For example,
SPARK does not support dynamic alloca-
tion of memory so things such as point-
ers and heap variables are not supported.
The use of GOTO statements is also not
supported and there are restrictions on
EXIT statements in loops. These rules
and restrictions in SPARK allow the
developer to predict the exact outcome
when the code is executed. This predic-
tion ability is a key feature of SPARK.

In order to show that the code devel-
oped has a very low error rate, SPARK
uses formal, mathematical techniques to
prove that the code is correct. The proof
of correctness relies on the mathematical
description of what is true before the
code is executed and what is true after the
code is executed. These are referred to as
preconditions and postconditions, respec-
tively. SPARK includes annotations that
allow the programmer to embed the pre-
condition and postcondition into a segment of
code in the form of comments.

The proof of correctness uses a tech-
nique that begins with the postcondition
and works backward through a segment
of code, hoisting the postcondition up
through the SPARK code [1]. Since the
code is predictable, it is possible to deter-
mine a general effect of each statement
and to reverse that effect, working back-
ward from the postcondition toward the
precondition. The result of this hoisting
is called a verification condition in SPARK. If
it can be shown that the precondition for
the segment of code implies the verifica-
tion condition developed from the hoist-
ing process, the proof of correctness is
complete.

SPARK includes several tools that
help with the proof of correctness. The
Examiner tool performs the hoisting
operation and produces a collection of

When Computers Fly, It Has to Be Right:
Using SPARK for Flight Control of
Small Unmanned Aerial Vehicles

One approach to software assurance is to use an annotated language such as SPARK. For safety critical software programs
such as Unmanned Aerial Vehicle flight control software, the risk of software failure demands high assurance that the soft-
ware will perform its intended function. Using an example from work being done at the U.S. Air Force Academy, this arti-
cle describes SPARK and the formal process of proving correctness of software implementations.

Lt. Col. Ricky E. Sward, Ph.D., Lt. Col. Mark Gerken, Ph.D., and 2nd Lt. Dan Casey
U.S. Air Force Academy

SPARK

Examiner

Annotated

SPARK

Program

Verification

Conditions

Completed

Proof

SPARK

Proof

Tools

Incomplete

Proof

Developer

Interactions

Figure 1: SPARK Tool Set

When Computers Fly, It Has to Be Right: Using SPARK for Flight Control of Small Unmanned Aerial Vehicles

September 2006 www.stsc.hill.af.mil 11

verification conditions. The development
team uses the Simplifier tool to reduce
the verification conditions as much as
possible before attempting to prove that
they are implied by the precondition. The
Proof Checker tool is used to prove that
the verification conditions imply the pre-
condition for a segment of code.

Figure 1 shows the process used by a
software developer. The developer is
responsible for annotating the code with
preconditions and postconditions. The
developer then executes the Examiner
tool on the annotated SPARK code, and
the Examiner returns the verification con-
ditions. The developer then executes the
Simplifier tool on the verification condi-
tions, and the Simplifier returns the sim-
plified verification conditions. The devel-
oper then executes the Proof Checker on
the verification conditions to see if the
tool can build a proof of program cor-
rectness automatically. If such a proof
cannot be built, then the developer
attempts to build a proof manually. In this
situation, either the code is incorrect or
the approach to constructing such a proof
is insufficient. An incomplete proof does
not necessarily mean that the code is
incorrect, but a complete proof does
mean the code is correctly implemented.

The burden placed on the developer
is to build correct preconditions and
postconditions, as well as correct code. If
a proof cannot be built automatically for
the code, then the developer will also
need to examine the code or the verifica-
tion conditions to see if a proof can be
built manually. This may seem like an
undue burden on the developer, but the
return on this investment can be as much
as an 80 percent reduction in costs during
the testing phase [4] due to the fact that
the code being developed is provably cor-
rect while being built.

It should be noted that since the pre-
conditions and postconditions are writ-
ten by the code developer, they are sub-
ject to human error. Therefore, these pre-
conditions and postconditions should be
reviewed and verified by a separate soft-
ware development team. This moves the
review process to a higher level of
abstraction since the development team
is now reviewing general mathematical
preconditions and postconditions instead
of pages of code written in a program-
ming language.

In the following section, we describe
a small example that shows the SPARK
development process in action. This
example also highlights how the SPARK
tools detect errors. At the U.S. Air Force
Academy, we use SPARK to develop

code in the senior-level software engi-
neering course as we develop code to
build flight plans for UAVs.

UAV Situational
Awareness Tool
In order to improve the situational aware-
ness of a commander during a crisis situa-
tion, we have developed the UAV
Situational Awareness Tool (UAVSAT) [7].
This year we have ported UAVSAT to
Google Earth2, which shows the location of
the UAV in three dimensions along with a
near real-time video feed from the UAV.

The UAVSAT tool also provides the com-
mander the ability to select a location on the
map for the UAV to orbit. Figure 2 shows
how the commander selects a location on
Google Earth and indicates where the UAV
should orbit. To position the UAV and gim-
baled camera, the software we developed
automatically calculates the optimal orbit
altitude and radius to position it in the cor-
rect orbit to stare at the location selected by
the commander. The software builds a new
flight plan for the UAV in order to transi-
tion it from its current latitude and longi-
tude to an optimal orbit radius and altitude.

h – Altitude

r - Radius

a - Angle

Figure 3: Calculating the Auto-Orbit

Figure 4: Mathematical Depiction

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 5: Ada_Radius

Figure 3: Calculating the Auto Orbit

SPARK

Examiner

Annotated

SPARK

Program

Verification

Conditions

Completed

Proof

SPARK

Proof

Tools

Incomplete

Proof

Developer

Interactions

Figure 2: Auto-Orbit Tool in UAVSAT

12 CROSSTALK The Journal of Defense Software Engineering September 2006

Using SPARK for Flight
Control
Since the orbit flight plan for the UAV is
built automatically by UAVSAT, it is
imperative to calculate the correct altitude
and radius for the UAV’s orbit. If these
values are not calculated correctly, the
UAV will not be able to position the cam-
era properly to observe the area of inter-
est. If these calculations include flight crit-
ical phases, such as terrain avoidance or
aircraft spacing, errors in the calculations
could cause loss of the aircraft or destruc-
tion of objects on the ground. In order to
ensure that the auto-orbit calculations are
coded properly, we are using SPARK to
verify the implementation.

Figure 3 (see page 11) shows which
calculations need to be done in order to
determine the proper flight plan for the
UAV. In the figure, h is the altitude of the
orbit, r is the radius of the orbit, and a is
the angle of the gimbaled camera. The lat-
itude and longitude of the orbit location
are provided to UAVSAT as selected
through the auto-orbit tool and positioned
by the commander. To simplify the orbit

problem, we have initially fixed the alti-
tude of the orbit at 500 feet above ground
level and have fixed the gimbal’s angle at
30 degrees. The code for calculating the
auto-orbit flight plan must simply deter-
mine the radius (r), given the altitude and
the gimbal angle.

Figure 4 depicts the problem as two
similar right triangles. The tangent of the
angle (a) is equal to the opposite side of
the triangle over the adjacent side of the
triangle. In the figure, this is represented
by tan (a) = h/r. Solving for r, the result is
r = h/tan (a). That is, to calculate the
radius of the orbit, we simply divide the
altitude by the tangent of a.

In order for UAVSAT to receive the
current latitude and longitude of the UAV
and also to upload new flight plans to the
UAV, our software must interface with
C++ code provided by the autopilot ven-
dor. We could have implemented UAVSAT
in C/C++, but we wanted to preserve our
ability to use the automated verification
provided by SPARK. We therefore used
Ada to build a Dynamically Linked Library
(DLL) called from the C++ code. This

DLL interface utility is well documented in
the Ada Language Reference Manual3.

Figure 5 shows the Ada_Radius func-
tion built in the DLL interface to calculate
the radius r for the auto-orbit utility. Now
the developer annotates preconditions and
postconditions for the Ada_Radius func-
tion.

Figure 6 shows the specification of the
Ada_Radius function. The specification
includes the annotations for the precondi-
tions and the postconditions. For func-
tions in SPARK, the postconditions are
annotated by using the return annotation
[1]. The precondition for Ada_Radius
allows heights greater than or equal to
zero. The input angle is restricted from
zero to avoid a potential division by zero
error. The postcondition for Ada_Radius
expresses the mathematical formula for
the radius calculation. The angle is multi-
plied by Pi over 180 to convert the angle
from degrees into radians as expected by
the tangent function.

Figure 7 shows the body of the
Ada_Radius function. Since the precon-
ditions and postconditions are defined in
the specification, no further annotations
are needed in the body. The code is now
ready to be analyzed by the SPARK
Examiner. The developer executes the
Examiner tool passing in the Ada_Radius
function to be analyzed. The Examiner
returns the verification conditions, and
the developer executes the Simplifier,
which returns the simplified verification
conditions shown in Figure 8.

In the figure, the lines beginning with
H represent hypotheses and the line begin-
ning with C represents a condition. The
symbol ->indicates implication. In this ver-
ification condition, H1 and H2 are
derived directly from the precondition of
Ada_Radius. H3 is determined during the
process of hoisting the postcondition
through the code and states that the
result of the tangent function is restrict-
ed from zero. Since the radius is given as
h/tan(a), H3 is avoiding a potential divi-
sion by zero. C1 indicates the final part of
the verification condition built from the
hoisting process. The code takes the first
line of C1, and the postcondition takes
the second line of C1. In order to prove
the code is correct, we must show that
this implication is true (i.e. that H1-H3
imply C1). So far, the developer has built
the code and the annotations. The
Examiner and Simplifier have built this
simplified verification condition auto-
matically for the developer.

The next step is to attempt to build a
proof that this verification condition is
true. The developer executes the Proof

Software Assurance

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
 end Ada_Radius;

Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 6: Specification for Ada_Radius

h – Altitude

r - Radius

a - Angle

Figure 3: Calculating the Auto-Orbit

h – Altitude

r - Radius

a - Angle

a

r

h

tan(a) =
h

r

Figure 4: Mathematical Depiction

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 5: Ada_Radius

Figure 5: Ada_Radius

Figure 3: Calculating the Auto-Orbit

h – Altitude

r - Radius

a - Angle

a

r

h

tan(a) =
h

r

Figure 4: Mathematical Depiction

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 5: Ada_Radius

Figure 4: Mathematical Depiction

When Computers Fly, It Has to Be Right: Using SPARK for Flight Control of Small Unmanned Aerial Vehicles

September 2006 www.stsc.hill.af.mil 13

Checker passing in the simplified verifica-
tion condition. In this example, the Proof
Checker is not able to build a proof and
the developer must consider the possibili-
ty that the code is incorrect. Careful
inspection of C1 shows that the angle vari-
able has been moved to the front of the
expression during the simplification
process. This inadvertently highlights a
discrepancy between the code and the
postcondition.

Figure 9 shows the original Ada_
Radius specification and body. Note the
parenthesis on line 14 of Figure 9 for the
call to Ada_Tangent. The postcondition
formula on line 7 includes parentheses
around the Angle variable, but the code
implementation does not. This is a simple
error in parentheses. This error is discov-
ered during development because the ver-
ification condition for Ada_Radius cannot
be proven to be correct. SPARK has
found an error during the development
phase where it can easily be fixed. Had the
error not been found until the testing or
implementation phase, it would have
proven more costly. This simple example
illustrates how SPARK reduces the cost of
software development by finding errors
during the development phase.

Figure 10 shows the corrected
Ada_Radius code. The parentheses have
been correctly placed around the Angle
variable. Now when the program devel-
opment team executes the SPARK tools
on the code, a proof can be built that
shows the verification condition is true.
SPARK is able to automatically prove this
code is a correct implementation for the
preconditions and postconditions.

This simple example shows the power
of the SPARK correctness by construction
methodology. Even on a simple example
such as this, an error in the code was dis-
covered. Students in a senior-level soft-
ware engineering course developed this
example code. They eventually noticed the
error in their code during testing and cor-
rected it in a later version. Had they been
using the SPARK approach from the start,
they would have found the error while
constructing the code and delivered cor-
rect code the first time.

Conclusion
As we have seen, the SPARK approach to
constructing code is a powerful way to
prove that the code being developed is a
correct implementation given the precon-
ditions and postconditions. This approach
is now being used to develop safety critical
flight control software for UAVs at the U.S.
Air Force Academy as part of a UAVSAT
that is designed to enhance a commander’s

ability to respond to dynamic situations
effectively. The added benefit of using the
SPARK approach to software develop-
ment is that it helps assure the system is
correct by construction.u

References
1. Barnes, John. High Integrity Soft-

ware: The SPARK Approach to
Safety and Security. London, UK:
Addison-Wesley, 2003.

2. Croxford, Martin, and James Sutton.
“Breaking Through the V and V
Bottleneck.” Lecture Notes in
Computer Science. 1031 (1996).

3. Croxford, Martin, and Dr. Roderick
Chapman. “Correctness by Construc-
tion: A Manifesto for High-Integrity
Software.” CrossTalk, Dec. 2005
<www.stsc.hill.af.mil/crosstalk/2005
/12/index.html>.

4. Amey, Peter. “Correctness by
Construction: Better Can Also Be
Cheaper.” CrossTalk, May 2002

<www.stsc.hill.af.mil/crosstalk/2002
/05/index.html>.

5. Shaw, M. “Abstraction Techniques in
Modern Programming Languages.”
IEEE Software Oct. (1984): 10-26.

6. Guttag, John V., and James J.
Horning. Larch: Languages and Tools
for Formal Specification. New York,
NY: Springer-Verlag, 1993.

7. Sward, Ricky, Tim Beerman, and Clint
Sparkman. “Unmanned Eyes in the
Sky.” Military Geospatial Technolo-
gies 3.3 (2005).

Notes
1. Retrieved from Praxis High-Integrity

Systems <www.praxishis.com> on
Apr. 24, 2006.

2. Retrieved from Google Earth, a 3-D
Interface to the Planet <http://
earth.google.com> Apr. 24, 2006.

3. Retrieved from Ada Language
Reference Manual <www.adahome.
com/rm95/>.

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 7: Body of Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 8: Results of Simplification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 10: Corrected Ada_Radius Code

Software Assurance

14 CROSSTALK The Journal of Defense Software Engineering September 2006

BuildSecurityIn
http://BuildSecurityIn.us-cert.gov
As part of the Software Assurance program, BuildSecurityIn
(BSI) is a project of the Strategic Initiatives Branch of the
National Cyber Security Division (NCSD) of the Department
of Homeland Security. The Software Engineering Institute was
engaged by the NCSD to provide support in the Process and
Technology focus areas of this initiative. The Software
Engineering Institute team and other contributors develop and
collect software assurance and software security information
that helps software developers, architects, and security practi-
tioners to create secure systems. BSI content is based on the
principle that software security is fundamentally a software
engineering problem and must be addressed in a systematic way
throughout the software development life cycle. BSI contains
and links to a broad range of information about best practices,
tools, guidelines, rules, principles, and other knowledge to help
organizations build secure and reliable software.

Software Assurance Technology Center
http://satc.gsfc.nasa.gov/
The Software Assurance Technology Center (SATC) was estab-
lished in 1992 as part of the Systems Reliability and Safety Office
at NASA’s Goddard Space Flight Center (GSFC). The SATC was
founded with the intent to become a center of excellence in soft-
ware assurance, dedicated to making measurable improvement in
both the quality and reliability of software developed for NASA
at GSFC. SATC is self-supported with internal funding coming
from research and application of current software engineering
techniques and tools. Research funding primarily originates at
NASA headquarters and is administered by its Software
Independent Verification and Validation Facility in Fairmont,

WV. Other support comes directly from development projects for
direct collaboration and technical support.

National Institute of Standards and
Technology (NIST) Computer Security
Division (CSD)
http://csrc.nist.gov/
The CSD-(893) is one of eight divisions within Information
Technology Laboratory. The mission of NIST’s Computer
Security Division is to improve information systems security by
raising awareness of information technology (IT) risks, vulner-
abilities, and protection requirements, particularly for new and
emerging technologies. NIST researches, studies, and advises
agencies of IT vulnerabilities and devising techniques for the
cost-effective security and privacy of sensitive federal systems;
developing standards, metrics, tests and validation programs to
promote, measure, and validate security in systems and services,
to educate consumers, and to establish minimum security
requirements for federal systems; and developing guidance to
increase secure IT planning, implementation, management and
operation.

CERIAS
www.cerias.purdue.edu
CERIAS is currently viewed as one of the world’s leading cen-
ters for research and education in areas of information security
that are crucial to the protection of critical computing and com-
munication infrastructure. CERIAS provides multidisciplinary
approaches to problems, ranging from technical issues (e.g.,
intrusion detection, network security, etc) to ethical, legal, edu-
cational, communicational, linguistical, and economical issues,
and the subtle interactions and dependencies among them.

WEB SITES

About the Authors

2nd Lt. Dan Casey, USAF,
graduated from the U.S.
Air Force Academy in
May 2006 where he
majored in computer sci-
ence with an emphasis in

information assurance. Casey is current-
ly stationed at Ramstein AFB, Germany
where he works as a communications
and information officer.

435th Communications Squadron
Ramstein AB, Germany
E-mail: daniel.casey@

ramstein.af.mil

Lt. Col. Mark J. Gerken,
Ph.D., USAF, is an As-
sistant Professor and the
Deputy Department
Head for Technology in
the Department of

Mathematical Sciences at the U.S. Air
Force Academy. He currently teaches
probability and statistics and has taught
calculus, differential equations, and engi-
neering mathematics. Gerken received
his doctorate in Computer Engineering
at the Air Force Institute of Technology
in 1995 where he studied software archi-
tecture and formal program develop-
ment.

Department of
Mathematical Sciences
2354 Fairchild DR STE 6D112
USAF Academy, CO 80840
E-mail: mark.gerken@usafa.af.mil

Lt. Col. Ricky E. Sward,
Ph.D., USAF, retired
from the Air Force as an
Associate Professor of
Computer Science at the
U.S. Air Force Academy.

He retired as the Deputy Head for the
Department of Computer Science and
the Course Director for the senior-level
two-semester Software Engineering cap-
stone course. Sward received his doctor-
ate in Computer Engineering at the Air
Force Institute of Technology in 1997
where he studied program slicing and re-
engineering of legacy code.

Department of
Computer Science
2354 Fairchild DR STE 6G101
USAF Academy, CO 80840
E-mail: ricky.sward@wavmax.com

September 2006 www.stsc.hill.af.mil 15

In the early 1960s, the National
Aeronautics and Space Administration

(NASA) was building the Saturn V space-
craft to go to the moon and back. In order
to accomplish this mission, NASA had to
develop an automated navigation system.
The hardware and software required for
this journey was housed in an instrumen-
tation unit (IU). However, no safety-criti-
cal software had ever been developed, and
the use of computers and sensors to relay
safety-critical data had never been used.
Digital computers were in their infancy
and the hardware was unreliable. In order
to compensate, NASA built three identical
units, each with its own hardware and sets
of input sensors. The outputs from the
three units were compared and if one was
out of line with the other two, that output
was ignored1.

In today’s world, computers are sever-
al orders of magnitude more reliable and
are much faster. As a result, the use and
complexity of tasks assigned to computa-
tional systems are also orders of magni-
tude greater. Today’s processors and soft-
ware programs are used in safety-critical
applications, ranging from heart monitors
to navigation systems to control of
nuclear power plants and weapons.
Development of full, independent redun-
dant systems for most of these applica-
tions would be cost-prohibitive. As a
result, systems and software engineers
should consider applying built-in-test
(BIT) procedures to the development of
all safety-critical functions, determining
where failures are likely to occur and what
the effect of the failures will be on overall
safety, along with providing backup proce-
dures to allow safe task completion.

Although BIT evaluations are com-
mon, their use is often limited to a com-
paratively small number of software and
system developers as BIT is not usually
taught as a formal curriculum in schools.
As a result, BIT may not be considered by
systems engineers for new systems, partic-
ularly when the purpose of the new sys-
tem is to demonstrate a new capability or

engineering concept. The assumption is
that if the design is good and thoroughly
tested, all of the hardware/software func-
tions will perform as intended. This article
provides the reader with a basic under-
standing of how BIT techniques are used
in embedded systems and how they can be
incorporated into new system require-
ments to reduce the risk of unanticipated
system failures. With this understanding,
the reader (systems engineers, hardware
developers, or software developers)
should have at least some capability to
evaluate the effectiveness and complete-
ness of BIT requirements and functions
employed in safety-critical systems.

The backup procedures and responses
to anticipated errors should also be con-
sidered in developing a safe system. The
development of backup procedures is
unique to each application and is beyond
the scope of this article. However, backup
sets of inputs provide a partial redundan-
cy at a much lower cost than a full system
redundancy. These backup sets of inputs
may include additional sensors used to
verify the primary sensor inputs. For
instance, velocity of an aircraft can be
measured by wind velocity or with Global
Positioning System (GPS) inputs. The
wind velocity is considered more accurate,

but the GPS has more checks and may be
more reliable; therefore, the GPS inputs
may act as the backup for the wind veloc-
ity measurements. Alternate procedures,
such as activation of a backup system or
initiation of manual procedures when the
automated system(s) fails, should also be
included in the system engineer’s require-
ments.

Typical Embedded System
In order to understand BIT requirements
for an embedded system, one has to
understand how an embedded system
operates. Figure 1 presents a simple sys-
tem consisting of several subsystems.
During normal operation, each subsystem
provides and receives data that are critical
to performing safety-critical functions. If
a sensor system fails to provide the correct
data to the flight control system or the
data is corrupted during transmission, the
safety of the aircraft and passengers could
be jeopardized.

Each subsystem may also be com-
prised of lower-level components, as
shown in Figure 2 (see page 16). Each
component has the potential of corrupt-
ing the subsystem as well as other subsys-
tems in the system. In the example sub-
system, Processor 1 reads inputs from var-

Application and Evaluation of Built-In-Test (BIT)
Techniques in Building Safe Systems

The use of automated functions to monitor and control the activities of potentially hazardous systems is almost unlimited.
Ensuring an adequate built-in-test (BIT) (i.e., that a system is fully functional and operational) is one of the most critical
aspects of developing safe, automated systems. However, because of its very specialized nature, application, and evaluation,
BIT requirements and techniques are often neglected or misunderstood. This article presents some of the goals and uses of
BIT, as well as the applications in providing a safe system.

James A. Butler
L-3 Communications

Figure 1: System of Subsystems

Software Assurance

ious sensors, user responses, etc; refor-
mats the inputs into engineering units; and
provides the data to Processor 2.
Processor 2 determines control com-
mands based on the inputs and provides
responses to Processor 1. Processor 1
then reformats the outputs and sends the
data to each of the respective output units
where it may be used on other safety-crit-
ical functions.

Interfaces to the system may include
operational interfaces such as multiplexer
(MUX), digital, discrete, analog, and main-
tenance interfaces. Internal interfaces
include all processor-to-processor and
processor-to-peripheral interfaces, includ-
ing dual-port random-access memory
(RAM), which is memory shared by both
processors.

The processors typically consist of
programmable read-only memory
(PROM), non-volatile RAM (NVRAM),
and volatile RAM. PROM is used to store
data and operational code while the sys-
tem is not in use. The boot loader is usu-
ally installed and runs on NVRAM.
During normal startup operations, the
boot loader moves the operational code
from PROM to volatile RAM and acti-
vates it. The volatile RAM is used to house
the operational code and provide tempo-
rary storage for data during real-time
operations.

Software and/or hardware interrupts

are usually used to synchronize the activi-
ties between processors. In a data-driven
system, Processor 1 provides an interrupt
to Processor 2 when new data is available.
Conversely, when Processor 2 is ready to
output its data, it provides an interrupt to
Processor 1. In a time-driven system,
Processor 1 and/or 2 are provided with
time-driven hardware and/or software-
driven interrupts.

Operational Functions
In the typical system discussed here, there
could be a number of high-level functions
including the boot loader, operational
code, and interface manipulations:
• Boot loader. The boot loader codes

typically reside in and operate out of
NVRAM. In a multi-processor system,
there would probably be a boot loader
for each processor. Since the boot
loader operates out of NVRAM, the
code is usually burned-in at the factory.
As a result, all reprogramming of the
code requires removal of the proces-
sor from the board; thus, functional
requirements are kept to a minimum.
The primary functions of the boot
loader include, first, moving the oper-
ational code from PROM to RAM and
initiating the operational code and,
second, providing the capability to
read the operational code from the
maintenance interface and write it to

PROM, thereby providing the capabil-
ity to update the operational software
and providing an access for perform-
ing maintenance evaluations on the
processor(s).

• Operational code. The operational
code is responsible for performing the
operational functions of the system.
After the operational code has been
written in RAM, it has full control of
the system until the system is powered
down or has its authority removed by
another system.

• Interfaces. The interfaces provide
access to data from other systems as
well as intra-system data and include
MUX, analog to digital (A/D) and dig-
ital to analog (D/A), discrete, and
dual-port RAM interfaces.

Modes of BIT and Their
Functions
Generally, there are four modes of BIT:
Startup BIT (SBIT), Continuous BIT
(CBIT), Initiated BIT (IBIT), and
Maintenance BIT (MBIT).
• SBIT is used in the evaluation of key

functions and capabilities before the
start of the application. SBIT is usual-
ly performed or at least initiated by the
boot loader and provides a GO/NO-
GO response to the system and users.
Some of the test functions performed
in SBIT include memory, boot load,

16 CROSSTALK The Journal of Defense Software Engineering September 2006

MUX BUS

P
r

sor 1 Pro e

Analog I/F

Digital I/F

Discrete I/F

PR

I ce

r

RO

Di it l I/F

Processing Unit

A/A/D,

D/A

Figure 2: Typical Embedded System/Subsystem

Application and Evaluation of Built-In-Test (BIT) Techniques in Building Safe Systems

and interface tests. Startup culminates
in initiating the operational code.

• CBIT is run out of the operational
code and is used to evaluate selected
elements and functions during the mis-
sion. CBIT is especially applicable to
non-expendable systems such as air-
planes or weapons, where passenger or
bystander safety is involved. The oper-
ational code generally performs fore-
ground and background BIT tasks.
The foreground tasks include all nec-
essary activities to accomplish the pri-
mary operational tasks, including eval-
uations of inputs to the system. The
background tasks include CBIT activi-
ties that cannot be performed in the
foreground. The following are the
activities performed in each:
o Foreground tests are the tests

needed to assure that the inputs,
processor, and software are valid.
These tests are preformed in each
interrupt cycle. Specific fore-
ground tests include the following:
• Input tests used in input verifi-

cation include checksum; parity
checks; time tags; sequence
numbers; heartbeat checks of
digital and discrete inputs and
voltage, current, and frequency
checks for analog and power
inputs.

• Output tests are used to pro-
vide the receiver with the abili-
ty to verify the accuracy of the
digital message or verify that
the analog/discrete outputs
were correctly received.

• Processor evaluations are used
to evaluate the health of the
processor. Specific tests include
interrupt monitoring, evaluation
of timing, and memory use.

• Software evaluations include
tests on the software to prevent
inaccurate or out-of-bounds
data from causing an irre-
versible error and evaluation of
the exception handling proce-
dures provided in some soft-
ware languages.

o Background tests are performed
on an as available basis. Generally,
the background tests require more
time to complete than what is avail-
able from the system. As a result,
background tests are performed
after operational code has complet-
ed its operational functions. Back-
ground tests include the following:
• Input tests performed in the

background including loopback
tests of digital, discrete, and

analog inputs, as well as non-
destructive Stuck-on-1/Stuck-
on-0 tests of interface buffers.

• Memory tests including non-
destructive Stuck-on-1/Stuck-
on-0 tests of all applicable
memory locations.

• IBIT is a detailed BIT used in mission
readiness assessments or to assist
MBIT in pinpointing sources of errors
in the system. Typically, IBIT would be
used to pinpoint faults in the system
down to the line replaceable unit
(LRU) level. IBIT is almost always
applicable to non-expendable systems
but may also be used in expendable
systems such as a smart weapon. Since
IBIT overrides the operational code
functions, it is not used while the sys-
tem is performing its normal functions.

• MBIT is exhaustive BIT designed to
interface with the maintenance port on
the unit. A maintenance port is usually
provided in the hardware design,
specifically to allow for maintenance
on the unit. This provides peek and poke
capabilities into designated memory
locations. The more common use is
the capability to load new software
into the system without having to dis-
mantle the unit or perform any hard-
ware manipulations. MBIT is applica-
ble to all systems as a development
platform and a provider of software
upgrades.

BITs to Be Performed
Complete evaluation of a system requires
several BIT functions. The following is a
summary of the BIT functions usually
performed in a safety-critical embedded
system:
• Download BIT verifies that the soft-

ware being loaded into PROM from
the maintenance port is correct.
Download BIT is performed by the
boot loader software as part of MBIT.

• Boot Load BIT verifies that the opera-
tional software being loaded from
PROM to NVRAM is correct. Boot
Load BIT is performed in SBIT.

• Memory test verifies that the memory
locations (i.e., RAM, scratch pad,
working areas) are functioning correct-
ly. Memory tests may be performed in
all modes of BIT.

• Interface BIT verifies that the data
being passed across the interfaces are
correct. Interface tests are used in all
modes of BIT but are more critical in
CBIT.

• Power BIT verifies that the power
inputs are within defined tolerances.
As such, Power BIT is used in all

modes of BIT.
• Processor BIT verifies the functionali-

ty of the processor in real-time. Its pri-
mary use is in the CBIT mode.

• Software BIT verifies the operational
functionality of the software and is
part of CBIT.

BIT Algorithms
There are several ways to perform each of
the BITs. The following are some of the
more widely used techniques:
• Checksum is a sum of all words within a

designated memory location and is
used to verify inputs to the system or
to verify input data matches the data
sent or that the data in a memory
block has not been corrupted. In per-
forming a checksum, the sum of all
words in a message or memory block
is written to a designated location. In
validating the data block, the data
within the block are summed and
compared to the original checksum; if
the two checksums do not agree, the
test fails.

• Parity is a single bit sum of all bits
within a word or memory location(s)
and is used in evaluation of discrete
ON/OFF inputs. A typical example is
a bank of toggle switches controlling
the functions of the software system.
An exclusive OR (XOR) is used for the
evaluations:

Parity = Switch_1 XOR Switch_2 XOR
. . . XOR Switch_n

Generally, an odd parity (i.e., XOR an
additional 1 to the function) is pre-
ferred, as loss of power to the bank of
toggle switches is apparent: all zeroes,
including the parity, indicate an error
such as loss of power to the toggle
bank and a 1 indicates that all switches
are OFF and valid, and the bank of
toggle switches have power.

• Stuck-on-1/Stuck-on-0 provides the abil-
ity to evaluate all bits within a word or
memory location to ensure its ability
to maintain both 1 and 0. Data pat-
terns that exercise all bits such as 0x55
(01010101) and 0xAA (10101010) are
written to the memory location and
read back. If the pattern read from the
memory location does not match the
one written, the test fails. In a non-
destructive test, the original value in
the memory location is saved and
restored once the test is complete.

• Performance BIT monitors the processor
speed and availability as part of the
processor BIT.

• Time tagging allows the evaluation of

September 2006 www.stsc.hill.af.mil 17

Software Assurance

the time that a message was sent or the
occurrence of an event with respect to
its last occurrence. Time tagging is
used most often in validating input
messages or as assistance to the receiv-
ing processor of another subsystem.

• Sequence numbering provides the ability
to evaluate input messages with
respect to the last message: A 1 is
added to the sequence number for
each new message by the sender and
verified by the receiver.

• Loop back tests evaluate interfaces by
sending a message to the interfacing
processor or analog device which
sends the message back. The original
message is compared with the message
that was looped back.

• Memory usage evaluates the available
memory during normal use.

• Interrupt testing provides evaluation of
the interrupt routines and functions.

• Exception handling is a pre-programmed
reaction to run-time errors. Its applic-
ability in BIT is to assure an adequate
reaction to a processor or software
error.

• Stack overflow is a software test used to
evaluate arrayed variables to ensure
that they do not overflow the array
dimensions and overwrite other data.

BIT Equipment (BITE)
Figure 3 presents an overview of how
BITE is used in a processor system. The
primary purpose of BITE is to provide a
non-intrusive analysis of the systems or

interfaces that cannot be directly evaluated
using conventional software BIT proce-
dures. The operational code uses the
inputs from BITE as a GO/NO-GO indi-
cation of the health of the unit or inter-
face being tested.

Typical Test Procedures
Test procedures used in BIT are usually a
combination of several BIT techniques or
algorithms. The following items present
an overview of some of the more com-
mon test procedures:
• Download. Download of software is

typically used to update the opera-
tional code stored in PROM. This
allows the developer to upgrade the
software in the field without having to
remove any hardware from the system.
The new software is usually read in
from the maintenance port and written
to PROM. The format for the down-
load code usually includes a header, the
text of the code, and a footer. The
header includes the number of words
in the record, a sequence number for
the record, and the function to be per-
formed in the download process. The
text contains the operational code and
the footer contains the checksum of
all words in the record. The proce-
dures used to validate the code include
the following:
o Sequence checking. The sequence

checking ensures that no record is
skipped or read twice.

o Record checksum. The record

checksum is used to validate that
each record is correctly read and
stored in PROM. Each word in the
record is written to PROM, read
back, and summed with the rest of
the words in the record and com-
pared with the checksum in the
footer.

o Block checksum. The block check-
sum is the final download test and is
used to make sure that all proce-
dures were done correctly. The
final word in a code block is typi-
cally a checksum of all words in the
block of code. The final validation
check is made by re-reading all of
the memory in the designated area
of PROM and performing a check-
sum on each word.

• Boot load. The procedures for boot
load are similar to download; except,
time is usually more critical. The data is
read from PROM and written to and
read back from RAM. A continuous
checksum is performed on the data read
back from RAM. When all data has been
written to RAM, the running checksum
is compared with the block checksum in
PROM. If the checksums agree, the
boot loader initiates and transfers con-
trol to the operational code.

• Memory. Stuck-on-1/Stuck-on-0 tests
are the most widely used methods for
evaluating memory. Typically, the boot
loader initiates the Stuck-on-1/Stuck-
on-0 testing of RAM using a destruc-
tive test (i.e., the RAM memory will be
cleared before the code is written). In
CBIT, non-destructive testing is per-
formed in the background.

• Interfaces. Without question, errors
introduced in hardware to software
and software to hardware interfaces
provide the greatest opportunity for
introduction of errors into the system.
For this reason, the industry has devel-
oped some good, and in some cases,
sophisticated BIT capabilities. The fol-
lowing presents an overview of the
interface BIT capabilities:
o MUX Interfaces. MUX inter-

faces, such as the MIL-STD-1553,
are purchased as a standard proto-
col, along with the MUX processor
hardware. The 1553 has been
around since the early 1970s, pri-
marily because of the BIT used in
detecting errors and verifying the
data being transferred2. Each mes-
sage received via the 1553 has a
header, body, and footer:
• Header. The header provides

the sub-address number, num-
ber of words in the record,

18 CROSSTALK The Journal of Defense Software Engineering September 2006

2

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 4: Overview of BIT Procedures for Analog Interfaces

Figure 5: Evaluation of Discrete Inputs

D/A

A/D

Digital

Processor

Analog Interface BIT using BITE.

Processing Unit

To/From

Analog Unit

BITE

D/A

A/D

Analog Unit

Digital

Processor

Analog Interface BIT UsingLoopback Tests

Processing Unit

Analog

Device

Background Continuous

A/D
Analog

Power

Processor Board

BITE

Peripheral

Equipment

Peripheral

Equipment

Software

Purpose:

– Provide non-intrusive

monitoring of equipment,

interfaces, etc., to ensure that

they are operating within

measurable limits.

– Provide information to the

software for evaluation of the

system's capability to perform.

Examples:

– Voltage and current meters to

evaluate interfaces, power

inputs, etc.

– Frequency monitoring of

analog interfaces.

– Monitoring of peripheral

equipment activities.

Parity

Bit

D1

D2

Dn

D1

D2

Dn

XOR Logic

ProcessorDiscrete

Source

Discrete Interface BIT using Parity checks.
Verification of the discrete interface can

be performed with:

– Parity checks:

• Each discrete input is input to Exclusive OR

(XOR) logic.

• The processor performs an XOR of the discrete

inputs and compares it to the one received from

the discrete source.

• Odd parity is recommended because a series of

FALSEs (0) would provide a TRUE (1) in the

parity bit (i.e., if the unit were off-line, all bits

would be False).

– Loopback tests with the other unit, evaluating

both TRUE and FALSE conditions.

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 4: Overview of BIT Procedures for Analog Interfaces

Figure 5: Evaluation of Discrete Inputs

D/A

A/D

Digital

Processor

Analog Interface BIT using BITE.

Processing Unit

To/From

Analog Unit

BITE

D/A

A/D

Analog Unit

Digital

Processor

Analog Interface BIT UsingLoopback Tests

Processing Unit

Analog

Device

Background Continuous

A/D
Analog

Power

Processor Board

BITE

Peripheral

Equipment

Peripheral

Equipment

Software

Purpose:

– Provide non-intrusive

monitoring of equipment,

interfaces, etc., to ensure that

they are operating within

measurable limits.

– Provide information to the

software for evaluation of the

system's capability to perform.

Examples:

– Voltage and current meters to

evaluate interfaces, power

inputs, etc.

– Frequency monitoring of

analog interfaces.

– Monitoring of peripheral

equipment activities.

Verification of the discrete interface can

be performed with:

– Parity checks:

• Each discrete input is input to Exclusive OR

(XOR) logic.

• The processor performs an XOR of the discrete

inputs and compares it to the one received from

the discrete source.

• Odd parity is recommended because a series of

FALSEs (0) would provide a TRUE (1) in the

parity bit (i.e., if the unit were off-line, all bits

would be False).

– Loopback tests with the other unit, evaluating

both TRUE and FALSE conditions.

Figure 4: Overview of BIT Procedures for Analog Interfaces

Application and Evaluation of Built-In-Test (BIT) Techniques in Building Safe Systems

September 2006 www.stsc.hill.af.mil 19

sequence number, and a time-
stamp.

• Body. The body text contains
the data being sent to the
receiving processor.

• Footer. The footer contains a
checksum of all data in the
record.

The following presents an
overview of the tests used by the
1553 to validate the correctness of
the data:
• The sequence number is evalu-

ated, ensuring that no messages
were lost or that no duplicate
was sent.

• The timestamp is compared to
the previous timestamp to
ensure updates are being
received as designed.

• The data is check-summed and
compared with the checksum in
the footer.

• The MUX BUS provides heart-
beat messages to indicate it is
operational, even when no
messages are being sent.

• If any of the previous tests fail,
a signal is passed to the opera-
tional code so that backup pro-
cedures can be activated.

It should be noted that all commu-
nication protocols use similar
error-checking procedures. Most
of the digital audio and visual pro-
tocols also contain error correcting
routines.

o Processor-to-processor and dual-
port RAM interfaces. In transfer-
ring data from one processor to
another, the sending processor
writes to a designated memory
address used by another processor.
Some of the off-the-shelf hardware
packages such as dual-port RAM
have error detecting and error pre-
venting code built into the system.
Additional error detecting capabili-
ties are easily included in the BIT
process and include sequence num-
bering, timestamps, heartbeat, and
especially checksumming as
described in the MUX interfaces.

o Analog interfaces. Analog devices
are usually very dumb; by their very
nature, they do not provide any way
of evaluating the input or output
signals. Therefore, errors are com-
mon from the analog sensor itself
or during transmission. Analog
interfaces include both inputs and
outputs to the system. In order for
the digital processor to be able to
read analog inputs, an A/D proces-

sor converts the analog signal to its
digital counterpart. Conversely, the
D/A provides the analog device
with the electrical signal corre-
sponding to the digital command
from the digital processor.
Validation of input signals is typi-
cally performed by the following:
• Range checking the signal.

In order for range checking to
be effective, the full electrical
range of the analog device
must not be used for normal
inputs. Thus, a zero or full scale
reading is distinguishable as an
error and not a normal input.

• Comparing the signal with
redundant analog signals.
The use of redundant signals is
a highly reliable method of
detecting errors in analog
inputs, assuming that all common
cause errors, such as common
grounding, have been eliminat-
ed. One way of enhancing the
reliability of the redundant sig-
nals is to set the signals in
opposite directions – sensor A
provides inputs from low scale
to high and sensor B provides
inputs from high to low.

• Reasonableness checks.
Reasonableness checks evaluate
the data to ensure the inputs are
reasonable, given the previous
data. If the sensor provides
inputs that are physically impos-
sible (i.e., the velocity goes from
+100 MPH to -100 MPH in a
single 0.01 sec. cycle), the sen-
sor data is probably incorrect
and should not be used in mak-
ing critical control commands.

Validation of output signals are
usually performed by use of BITE
or loopback tests, as presented in
Figure 4.
• BITE monitors the analog

input and output channels to
ensure the correct range of
voltage, current, and/or fre-

quency signals are provided.
• BITE can also be used to per-

form an internal loopback test
which can be used to validate
the A/D and D/A converters
within the processing unit.

• Loopback tests that do not
engage the analog device are
performed in SBIT or back-
ground CBIT.

• Continuous foreground CBIT
loopback tests evaluate each sig-
nal to the analog device. Since
the foreground CBIT evaluates
all command signals, it is the
preferred method of BIT evalu-
ation for analog outputs.

o Discrete interfaces. Discrete
interfaces are typically used to acti-
vate (turn on) or deactivate (turn
off) a particular function or input.
Figure 5 provides an overview of
testing discrete inputs. Parity evalu-
ations provide evaluation of all
inputs at all times and is considered
superior when compared to other
methods of evaluations, such as
loopback tests, which must be per-
formed in the background.

• Processor. Evaluation of processors
is particularly important as new code is
added or existing code has been mod-
ified. Some of the processor BITs
include the following actions:
o Evaluate the performance of the

system by, first, setting time limits
on hardware to software functions
and measure the time to perform
primary functions; and, second,
setting flags to determine if any
high-priority functions are not per-
formed in an interrupt cycle.

o Measure and compare the memory
usage with threshold percentages
to ensure adequate capability dur-
ing operations.

o Evaluate timed interrupts by pro-
viding hardware interrupts (i.e.,
watchdog timers) to evaluate soft-
ware functions and vice versa.

• Software. The purpose of software

2

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 4: Overview of BIT Procedures for Analog Interfaces

Figure 5: Evaluation of Discrete Inputs

D/A

A/D

Analog Unit

Digital

Processor

Analog Interface BIT UsingLoopback Tests

Processing Unit

Analog

Device

Background Continuous

Purpose:

– Provide non-intrusive

monitoring of equipment,

interfaces, etc., to ensure that

they are operating within

measurable limits.

– Provide information to the

software for evaluation of the

system's capability to perform.

Examples:

– Voltage and current meters to

evaluate interfaces, power

inputs, etc.

– Frequency monitoring of

analog interfaces.

– Monitoring of peripheral

equipment activities.

Parity

Bit

D1

D2

Dn

D1

D2

Dn

XOR Logic

ProcessorDiscrete

Source

Discrete Interface BIT using Parity checks.
Verification of the discrete interface can

be performed with:

– Parity checks:

• Each discrete input is input to Exclusive OR

(XOR) logic.

• The processor performs an XOR of the discrete

inputs and compares it to the one received from

the discrete source.

• Odd parity is recommended because a series of

FALSEs (0) would provide a TRUE (1) in the

parity bit (i.e., if the unit were off-line, all bits

would be False).

– Loopback tests with the other unit, evaluating

both TRUE and FALSE conditions.

Figure 5: Evaluation of Discrete Inputs

Software Assurance

20 CROSSTALK The Journal of Defense Software Engineering September 2006

BITs is not to perform validation of the
software but to monitor its functions
and inputs to ensure that the software
does not crash during critical opera-
tions. The procedures available for soft-
ware evaluations include the following:
o Data analysis. First, perform san-

ity checks on input data and, sec-
ond, prevent run-time errors
(divide by zero, log of zero or a
negative number, etc.) by ensuring
that incorrect and out-of-bounds
data are not used.

o Stack overflow. Provide software
checks to ensure against and report
conditions where stacks overflow
(especially necessary in C, C++,
and other languages).

o Exception handling. Provide ex-
ception handling capabilities in the
code development so that run-time
errors do not cause the system to
crash. Ada and other languages pro-
vide for exception handling routines.

Confirmation of Emergency
Procedures
Providing responses to emergency situa-
tions is one of the primary responsibilities
of safe software. Ensuring that the indi-
cated response is correct is often depen-
dent on knowing that all inputs, proce-
dures, and commands are correct. To this
end, the software system must provide
adequate BIT before the emergency proce-
dure is activated. The use of foreground
rather than background tests reduces the
time required to confirm that emergency
procedures are required. If errors are
detected, the backup or redundant inputs
and procedures built into the system pro-
vide a safe alternative. If the data was not
corrupted, a clear emergency procedure
should be activated. If data errors are
detected by BIT, the backup or redundant
inputs and procedures built into the sys-
tem provide safe alterations without hav-
ing to activate emergency procedures.

Summary
The cost of evaluating BIT and imple-
menting recommended improvements is
relatively inexpensive when built into the
system from the beginning. The ability to
perform BIT on most interfaces is deter-
mined during the high-level system design;
BIT between subsystems requires that
both subsystems perform their respective
BIT functions. However, correcting inter-
face BIT oversights requires making
changes to at least two software compo-
nents and may also require modification
of the hardware design.

There are no hard and fast rules con-
cerning BIT – certainly no one size fits all
recommendations. As a result, the applica-
tion determines the amount and detail of
BIT required. The number and type of
responses to BIT are dependent on the crit-
icality of the application and the likelihood
of the system error. Each response criteria is
determined by available software and system
backups and the level of operational capa-
bility that is desired. As a result, each backup
procedure needs to be evaluated for its ade-
quacy in meeting the response criteria.u

Notes
1. John Duncan presents a great

overview of the development of the
Instrumentation unit in <www.apollo
saturn.com/s5news/p71-7.htm>.

2. Several companies provide very good
Web sites to their 1553 products and
full standard descriptions are available
from the government. The PDF pre-
sented, <www.testsystems.com/pdf/
overview.pdf>, provides a good over-
view of the development and use of
the 1553.

About the Author

James A. Butler has
more than 35 years in
software safety analysis
and software develop-
ment, including embed-
ded systems, system engi-

neering, BM/C3, and engineering. He
has performed software safety analysis
on the Apache helicopter flight manage-
ment computer. The analyses performed
included requirements review, design
implementation, and technical adequacy
test; analysis of the design using soft-
ware failure modes, effects, and criticali-
ty analysis; and determination of critical
software components, inputs, and algo-
rithms. Butler has worked closely with
designated engineering representatives in
performing software safety evaluations
for the Chinook helicopter, digital
advanced Flight Control System, and C-
130 Intercommunication and Radio
System, and he has evaluated applicable
safety standards for the Army’s Future
Combat System.

4121 Hide-A-Way DR
Guntersville, AL 35976
Phone: (256) 505-0808
E-mail: jimjudybutler@

bellsouth.net

COMING EVENTS

October 2-3
The DoD-DHS

Software Assurance Forum
McLean, VA

https://buildsecurityin.us-cert.
gov/daisy/bsi/events.html

October 9-11
CNIS 2006 Communication, Network,

and Information Security
Cambridge, MA

www.iasted.org/conferences/2006/
cambridge/cnis.htm

October 10-11
PNSQC 2006

The 24th Annual Pacific Northwest
Software Quality Conference

Portland, OR
www.pnsqc.org

October 10-11
VERIFY 2006

International Software Test Conference
Washington D.C.

www.effectivesoftwaretesting.com/
conference_verify.aspx

October 16-20
STAR WEST 2006

Software Testing Analysis and Review
Anaheim, CA

www.sqe.com/starwest

October 23-25
MILCOM 2006

Military Communications Conference
Washington D.C.

www.milcom.org/index.htm

October 23-26
SEC 2006

9th Annual Systems
Engineering Conference

San Diego, CA
www.ndia.org

2007
2007 Systems and Software

Technology Conference

www.sstc-online.org

September 2006 www.stsc.hill.af.mil 21

The concept of risk – the net negative
impact of the exercise of a vulnerability, con-

sidering both the probability and the impact of
occurrence [1] – is a concept that is hundreds
of years old. Even the concepts of mea-
suring and weighing business risks have
been around for a long time. Insurance
companies calculate risks every day and
use the calculations to set rates for life,
health, and property coverage.

Software development is a constant
balancing act between functional require-
ments, funding, deadlines, limited
resources, risk, and flexibility. Many of the
current major software development life
cycles (SDLCs) treat security simply as just
one more non-functional requirement [2]
and do not cover the topic of information
security or address it in any detail. The
result is often that security remains a non-
functional requirement during the soft-
ware development process. During the
software engineering process, when
resources, budgets, and schedules become
tight, trade-offs must be made as some
requirements must be dropped. This
trade-off process introduces risk into the
software development process. This is not
to imply that security is always an impor-
tant requirement of every software devel-
opment effort. However, if confidentiali-
ty, integrity, and availability of the soft-
ware or the information it stores, trans-
mits, processes, or displays is important,
then security should be considered an
important requirement.

When risk is introduced into the soft-
ware development process where confi-
dentiality, integrity, and availability of the
software or its information are important,
then the result may be that the resulting
software is not as secure as it needs to be.
The General Accounting Office estimates
$38 billion per year [3] in U.S. losses due to
costs associated with computer software
security lapses. How can we resolve this
problem?

One solution is to apply information
security risk assessment practices to the
SDLC. Information security risk assess-

ment is a practice used to ensure that
computing networks and systems are
secure. By applying these methods to the
SDLC, we can actively reduce the number
of known vulnerabilities in software as it
is developed. For those vulnerabilities that
we cannot or choose not to mitigate, we at
least become aware of the risks involved
as software development proceeds. The
remainder of this article will focus on how
to apply simple risk assessment techniques
to the SDLC process.

Assessing Risk Within the
SDLC
There are many different methodologies,
tools, and techniques that can be used to
assess risk. For the purposes of this arti-
cle, we will focus primarily on a simple
qualitative method. Qualitative risk assess-
ments are all about identifying and relat-
ing risks relative to each other. The per-
ceived impact of a loss associated with a
risk is determined rather than the actual
value associated with the loss. Also,
because they are subjective in nature and
do not require the precise knowledge
required by other risk assessment

methodologies, they typically take less
time to conduct.

There are a number of essential ele-
ments of any qualitative risk assessment
process. First, assets, threats, and vulnera-
bilities must be identified. An analysis can
then take place that determines the likeli-
hood of a vulnerability being exploited,
the adverse impact of a vulnerability
being exploited, and, finally, the level of
risk associated with each threat-vulnera-
bility pair. Controls may then be applied
to eliminate or prevent the exercise of
vulnerabilities. From a high-level view, the
relationships between these entities are
outlined in Figure 1. Looking at each of
these elements a little closer, some of the
ways we can apply them in each phase of
the SDLC become visible.

Identifying Threats
A threat is something that is a source of
danger to an asset. Sources of threats may
include (but are not limited to) those list-
ed in Table 1 (see page 22).

The following organizations have pub-
lished lists of potential threats:
• The National Institute of Standards

and Technology (NIST) [4].

Assessing Information Security Risks in the
Software Development Life Cycle

Information is among the most important assets in any organization. Organizations are constantly building more complex
applications to help them accomplish their mission and are entrusting their sensitive information assets to those applications.
But are their information assets secure as they are transmitted, modified, stored, and displayed by those applications? Are
new applications developed in a manner that will keep those sensitive information assets secure? How can we know for cer-
tain? The answers to these questions are all related and involve the process of assessing risk.

Douglas A. Ashbaugh
Software Engineering Services

Human Threats Technical Threats Environmental Threats

Data entry errors and omissions Misrepresentation of identity Electromagnetic interference

Inadvertent acts and carelessness Unauthorized access to systems Hazardous materials

Impersonation Data contamination Power fluctuations

User abuse and fraud Malicious code Water leaks

Theft, sabotage and vandalism Session takeover Fire

Espionage Natural disasters

Table 1: Threat Sources

Checklist Sources Application Code

Scanning Tools Scanners

The Open Web Application Security

Project (OWASP) [8]

Paros Proxy Nessus

Common Vulnerabilities and Exposures

(CVE) [9]

WebScarab Nmap

National Vulnerability Database (NVD)

[10]

Web Inspect Nikto

Whisker

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]

Allows a threat

to affects the

confidentiality, integrity,

of availability of

Mitigates

(Reduces or

Eliminates)

Control

(provides

protection)

Threat

(Source of

Danger)

MeasuresMeasures

probability of probability of

damage todamage to

Risk

(possibility

of harm)

Is protected

by

Prevents

exercise

of

Exercises

(Exploits)

ControlControlControl

(provides(provides(provides

protection)protection)protection)

ThreatThreatThreat

(source of(Source of(source of

danger)Danger)danger)

RiskRiskRisk

(possibility(possibility(possibility

of harm)of harm)of harm)

Network Vulnerability

Figure 1: Relationships Between Risk Analysis Elements

Software Assurance

22 CROSSTALK The Journal of Defense Software Engineering September 2006

• The SysAdmin, Audit, Network,
Security (SANS) Institute [5].

• The Center for Medicare and Medicaid
Services (CMS) [6].
Many of these lists provide not only

descriptions of threats, but also many
real-world examples, as well as the poten-
tial impact a threat may have on the confi-
dentiality, integrity, and availability of an
asset.

It is important to identify threats
because it is necessary to understand the
potential impact a threat may have upon
an asset. Once this potential impact is
understood, controls that safeguard the
asset from the threat can be identified.
The earlier such controls are identified
within the SDLC, the easier they can be
incorporated into the design.

Identifying Vulnerabilities
A vulnerability refers to a weakness in
design or controls that can be exploited by
a threat to cause harm to an asset.
According to the CERT Coordination
Center, more than 90 percent of software
security vulnerabilities are caused by
known software defect types, and most
software vulnerabilities arise from com-
mon causes. In fact, the top 10 causes
account for about 75 percent of all vul-
nerabilities [7].

One of the easiest ways to identify vul-
nerabilities is to use checklists of common
vulnerabilities developed by government
and other interested agencies and groups.
Another method would be to use applica-
tion code scanning tools. Finally, network
vulnerability scanners can also be used to
find potential security vulnerabilities with-
in an application as it exists in a network
environment. A list of these checklists and
tools is outlined in Table 2.

Identifying Assets
An asset is something of value to an orga-
nization. Assets associated with software
development may include – but are not
limited to – software, information, ser-
vices, processes, functions, business rules,
encryption keys, and methods.

It is important to identify assets as
early as possible. Without knowing what
assets need protection and without under-
standing what may happen when that pro-
tection fails, risk analysis techniques can-
not produce worthwhile results [11].

In the case of identifying assets for
software development, it is important to
look to the business areas that will use the
application being developed and its data.
The end-users and their management are
in the best position to understand what
business information is essential to the
mission and goal of the development
effort. Furthermore, end-users and their
management are in the best position to
identify the business impact of the failure
to protect the critical information.

Assets can also be identified by look-
ing at policy. If an organization has good
enterprise security policies, then assets can
be discovered by a review of those poli-
cies to determine what types of assets the
policy strives to protect. For example, a
data classification policy might require
that all customer information that could
directly identify a customer (i.e. name,
address, customer identification, etc.)
must be considered confidential. If the
application under development were to
use or process any of this information, we
would then consider that information an
asset. Another example might include a
disposal and reuse policy which requires
that media must be thoroughly sanitized
prior to its reuse or disposal. The assets in

this case are hardware and/or reusable
media storage devices and the information
stored on them. Likewise, other policies
may deal with the physical protection of
people, hardware, documentation, build-
ings, and services.

Once information assets have been
discovered, we can then apply analysis
techniques to discover other potential
assets. We can look at use cases, process
flow diagrams, code, and other documen-
tation and find where identified assets are
accessed, read, written, modified, used, or
monitored. Are specific processes, meth-
ods, services, functions, hardware, or indi-
viduals used to modify, display, transmit or
store the assets? Any of these items may
also be assets requiring protection.

Analyzing Risks
Risks occur when a threat exercises a vul-
nerability. The first step in analyzing risks
is to determine the likelihood that a threat-
vulnerability pair will be exercised. This is
accomplished by consulting a likelihood
table such as Table 3. Note that Tables 3-
5 are provided as examples of what likeli-
hood, impact, and risk tables might look
like. Organizations such as NIST, SANS,
CMS and others have developed a wide
variety of tables that may be used in devel-
oping a table to fit your organization’s spe-
cific needs.

Once the likelihood of a threat-vulner-
ability pair being exercised has been deter-
mined, then the impact to the assets iden-
tified if the threat-vulnerability pair is
exercised may be determined according to
Table 4.

Now the risk that a given threat may
cause a specific impact by the exercise of
a vulnerability may be determined. The
risk level is determined by cross-referenc-
ing the likelihood with impact as shown in
Table 5.

The process should be continued until
all of the risks have been assessed. Once
all risks have been assessed, management
can prioritize, evaluate, and implement the
most appropriate controls in order to mit-
igate the risks that have been uncovered.
There are several options and strategies
for mitigating risks including, but not lim-
ited to the following:
• Risk assumption. Choosing to

accept the potential risk as is, or imple-
menting controls to lower the risk to
an acceptable level.

• Risk avoidance. Avoiding the risk by
eliminating the cause or consequence
of the risk.

• Risk limitation. Limiting the adverse
affects of a risk by implementing addi-
tional controls.

Human Threats Technical Threats Environmental Threats

Data entry errors and omissions Misrepresentation of identity Electromagnetic interference

Inadvertent acts and carelessness Unauthorized access to systems Hazardous materials

Impersonation Data contamination Power fluctuations

User abuse and fraud Malicious code Water leaks

Theft, sabotage and vandalism Session takeover Fire

Espionage Natural disasters

Table 1: Threat Sources

Checklist Sources Application Code

Scanning Tools Scanners

The Open Web Application Security

Project (OWASP) [8]

Paros Proxy Nessus

Common Vulnerabilities and Exposures

(CVE) [9]

WebScarab Nmap

National Vulnerability Database (NVD)

[10]

Web Inspect Nikto

Whisker

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]

Allows a threat

to affects the

confidentiality, integrity,

Mitigates

(Reduces or

Eliminates)

Is protected

by

Prevents

exercise

of

Exercises

(Exploits)

Network Vulnerability

Table 1: Threat Sources

Human Threats Technical Threats Environmental Threats

Data entry errors and omissions Misrepresentation of identity Electromagnetic interference

Inadvertent acts and carelessness Unauthorized access to systems Hazardous materials

Impersonation Data contamination Power fluctuations

User abuse and fraud Malicious code Water leaks

Theft, sabotage and vandalism Session takeover Fire

Espionage Natural disasters

Table 1: Threat Sources

Checklist Sources Application Code

Scanning Tools Scanners

The Open Web Application Security

Project (OWASP) [8]

Paros Proxy Nessus

Common Vulnerabilities and Exposures

(CVE) [9]

WebScarab Nmap

National Vulnerability Database (NVD)

[10]

Web Inspect Nikto

Whisker

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]

Allows a threat

to affects the

confidentiality, integrity,

Mitigates

(Reduces or

Eliminates)

Is protected

by

Prevents

exercise

of

Exercises

(Exploits)

Network Vulnerability

Table 2: Identifying Vulnerabilities

Assessing Information Security Risks in the Software Development Life Cycle

September 2006 www.stsc.hill.af.mil 23

• Risk transference. Transferring the
risk to compensate for the loss, such as
purchasing insurance.

Assessing Risks Within
the SDLC
It is as important to know when to assess
risks within the SDLC as it is to know how
to assess risks within the SDLC. Risks
should be assessed at the very beginning
of the project and continue with each pro-
gram review. It is also important to assess
risks whenever requirements change and
when the potential for new vulnerabilities
and new threats are introduced.

Example of Risk Assessment
Consider an application for the financial
services industry that requires a lot of per-
sonalized customer information such as
names, employee identification numbers
(which may be social security numbers),
salaries, contributions to retirement plans,
and dates of birth. Customer information
for the application is gathered by a specif-
ic process and stored in a database.
Complex business rules, which are propri-
etary to the organization, are used within
the application to calculate individual
retirement benefits. Furthermore, organi-
zational policy requires that all informa-
tion that could specifically identify an indi-
vidual and all personal financial informa-
tion about an individual must be consid-
ered confidential. In this example, the fol-
lowing would be the assets:
• Customer information specifically

identifying an individual (name, identi-
fication number, date of birth).

• Customer financial information
(salary, contributions to retirement
plans).

• The database where the information is
stored.

• The proprietary business rules.
• The process that gathers the data and

stores it in a database.
The application allows employees of

the organization to modify customer data.
It also allows customers to view, but not
modify or calculate, their retirement bene-
fits online. Therefore, threats to such
assets might include the following:
• Inadvertent, unauthorized modifica-

tion of data (if customer data was
modified or entered by mistake, the
program could calculate incorrect ben-
efits).

• Deliberate unauthorized exposure of
the data (if a malicious person, either
external or internal was able to break
into the application).

• Deliberate unauthorized modification

of the data (if a malicious individual or
process was able to access the data-
base, the data could be destroyed or
corrupted).
Next we need to identify potential vul-

nerabilities. Upon reviewing a list of the
top 10 vulnerabilities from the OWASP
site, we see that Structured Query
Language (SQL) injection is a possible
vulnerability for this application. If valida-
tion rules on input fields do not limit the
ability to input malicious characters, such
as apostrophes, and error-handling rou-
tines generate messages to the user that
are not edited, then the possibility exists
that a malicious user could see the name
of the database and potentially some of
the field names as well. Armed with this
information, a malicious user could poten-
tially alter, destroy, or disclose confidential
customer data.

Let us examine the threat-vulnerability
pair of a deliberate unauthorized modifi-
cation of the data by an employee exercis-
ing the SQL injection vulnerability. To

understand the potential problem, see
Figure 2 (see page 24).

In this example, the application’s con-
trol (code which could prevent the SQL
injection from being exercised) is inade-
quate to protect the customer database
(our asset) from the employee (our threat).
If the threat were to enter the right char-
acter string into the application, the SQL
injection vulnerability would reveal infor-
mation about the customer database
directly to the employee (our threat).
Therefore risk exists that an employee
(threat) could then use that knowledge
(vulnerability) to directly alter, disclose,
and/or destroy data in the customer data-
base (our asset). But how great is this risk?

Based upon our criteria, the likelihood
that this threat-vulnerability pair would be
exercised is rated as medium. The reason
that the likelihood is ranked at medium is
that there are no controls in place to pre-
vent the SQL injection from being exer-
cised; however, the possibility that an
employee (the only ones who can input

Human Threats Technical Threats Environmental Threats

Data entry errors and omissions Misrepresentation of identity Electromagnetic interference

Inadvertent acts and carelessness Unauthorized access to systems Hazardous materials

Impersonation Data contamination Power fluctuations

User abuse and fraud Malicious code Water leaks

Theft, sabotage and vandalism Session takeover Fire

Espionage Natural disasters

Table 1: Threat Sources

Checklist Sources Application Code

Scanning Tools Scanners

The Open Web Application Security

Project (OWASP) [8]

Paros Proxy Nessus

Common Vulnerabilities and Exposures

(CVE) [9]

WebScarab Nmap

National Vulnerability Database (NVD)

[10]

Web Inspect Nikto

Whisker

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]

Allows a threat

to affects the

confidentiality, integrity,

Mitigates

(Reduces or

Eliminates)

Is protected

by

Prevents

exercise

of

Exercises

(Exploits)

Network Vulnerability

Table 3: Likelihood Determination [12]

Impact Criteria

High • Costly loss of major tangible assets or resources.

• May significantly violate, harm, or impede mission,

reputation, or interest.

• May result in human death or serious injury.

Medium • Costly loss of assets or resources.

•
• May result in human injury.

Low • Loss of some assets or resources.

• Noticeably affect mission, reputation, or interest.

ImpactThreat

Likelihood Low Medium High

Low Low Risk Low Risk Medium Risk

Medium Low Risk Medium Risk Medium Risk

High Medium Risk Medium Risk High Risk

May violate, harm, or impede mission, reputation, or interest.

Table 4: Impact Determination [12]

Impact Criteria

High • Costly loss of major tangible assets or resources.

• May significantly violate, harm, or impede mission,

reputation, or interest.

• May result in human death or serious injury.

Medium • Costly loss of assets or resources.

•
• May result in human injury.

Low • Loss of some assets or resources.

• Noticeably affect mission, reputation, or interest.

ImpactThreat

Likelihood Low Medium High

Low Low Risk Low Risk Medium Risk

Medium Low Risk Medium Risk Medium Risk

High Medium Risk Medium Risk High Risk

May violate, harm, or impede mission, reputation, or interest.

Table 5: Risk Determination

Software Assurance

24 CROSSTALK The Journal of Defense Software Engineering September 2006

data in the application) is highly motivated
and has the knowledge to actively seek out
the database and impact it is negligible.

Next, we need to look at the potential
impact of the threat-vulnerability pair
being exercised. Our threat – the mali-
cious user, through the SQL injection
error – knows the name and fields within
the database which contain confidential
customer information. The malicious user
could find customer salaries and social
security numbers within this database and
place them on the Web, affecting confi-
dentiality. He could alter the information,
affecting integrity. Or he could delete all
of the information, affecting the availabil-
ity of the data for others. In this case, we
have to assume the worst: The malicious
user would reveal the confidential infor-
mation to others. Depending upon the
customer, this could significantly violate
the organization’s reputation and mission.
Therefore, the impact for this threat-vul-

nerability pair is rated high.
Cross-indexing the threat likelihood

with the impact, we see that this is a medi-
um risk. Management can now prioritize
this risk alongside all other risks and deter-
mine what risk mitigation strategies may
be appropriate.

Assume that management has decided
to mitigate this risk by requiring that code
be developed to prevent a SQL injection
attack by requiring validation on all user
inputs and only allowing certain error mes-
sages to reach end-users (see Figure 3).

In this instance, our control (the code
to require proper input validation and
error handling) prevents our threat (the
employee) from exploiting the SQL injec-
tion vulnerability. The employee may
attempt to enter the same character string
as before, but the code that handles input
validation would prevent him from either
entering or executing a command using
that character string. As a result, no infor-

mation about the customer database is
passed to the employee and he is unable to
directly alter, disclose, and/or destroy data
in the customer database.

Conclusion
Organizations continue to entrust precious
assets to software that is developed with the
same vulnerabilities over and over again.
Ninety percent of software security vulner-
abilities are caused by known software
defect types, and the top 10 causes account
for about 75 percent of all vulnerabilities.
How can we reduce these vulnerabilities?

One answer is to apply the practice of
assessing security risks within the SDLC.
By assessing risks – common threats, vul-
nerabilities, and risks can be identified.
Once the risks are known, then steps can
be taken to eliminate or at least mitigate
them. Unknown risks can not be eliminat-
ed or mitigated. That is why it is important
we attempt to detect and analyze risks
within the SDLC.u

References
1. National Institute of Science and

Technology. Risk Management Guide
for Information Technology Systems.
Special Paper 800-30. U.S. Department
of Commerce. July 2002 <www.csrc.
nist.gov/publications/nistpubs/800
-30/sp800-30.pdf>.

2. Petersen, Gunnar. “Phasing Security
Into the SDLC – A Comparison of
Approaches.” Risk Management. 10
Jan. 2006 <http://1raindrop.type
pad.com/1_raindrop/2006/01/
phasing_securit.html>.

3. National Cyber Security Partnership.
Improving Security Across the
Software Development Lifecycle –
Task Force Report. 1 Apr. 2004
<www.cyberpartnership.org/SDLC
FULL.pdf>.

4. National Institute of Standards and
Technology. Database of Threats and
Countermeasures. 1999 <http://csrc.
nist.gov/nissc/1999/proceeding/
papers/o28.pdf>.

5. “@RISK: The Consensus Security
Alert.” SysAdmin, Audit, Network,
Security (SANS) Institute. 5 June 2006
<www.sans.org/>.

6. “CMS Information Systems Threat
Identification Resource.” Centers for
Medicaid and Medicare Services
(CMS). 7 May 2002 <http://csrc.nist.
gov/fasp/FASPDocs/risk-mgmt/
Threat_ID_resource.pdf>.

7. National Cyber Security Partnership.
Improving Security Across the
Software Development Life Cycle –
Task Force Report. 1 Apr. 2004

Revealing

information

about

Insufficient

to prevent

Cods

(controls)

Disgruntled

Employee

(Threat)

Measures

probability of

harm to

Customer

Database

(asset)

Risk
Inadequate

to protect

Uses information to

alter , disclose,

and/or destroy

Reveals

information

to

Exploits

CodeCodsCode

(controls)(controls)(controls)

DisgruntledDisgruntledDisgruntled

EmployeeEmployeeEmployee

(threat)(Threat)(threat)

CustomerCustomerCustomer

(asset)(asset)(asset)

RiskRiskRisk

Prevents

impact by

Eliminates

Input Validation

& Error Handling

Routines

(controls)

Disgruntled

Employee

(Threat)

Measures

probability of

damage to

Customer

Database

(asset)

Risk Protects

Prevents

information

revealed by

Exploits

Input Validation

& Error Handling

Routines

(controls)

DisgruntledDisgruntledDisgruntled

EmployeeEmployeeEmployee

(threat)(Threat)(threat)

CustomerCustomerCustomer

DatabaseDatabaseDatabase

(asset)(asset)(asset)

RiskRiskRisk

Figure 3: Example – Risk Mitigated

Revealing

information

about

Insufficient

to prevent

Cods

(controls)

Disgruntled

Employee

(Threat)

Measures

probability of

harm to

Customer

Database

(asset)

Risk
Inadequate

to protect

Uses information to

alter , disclose,

and/or destroy

Reveals

information

to

Exploits

CodeCodsCode

(controls)(controls)(controls)

DisgruntledDisgruntledDisgruntled

EmployeeEmployeeEmployee

(threat)(Threat)(threat)

CustomerCustomerCustomer

(asset)(asset)(asset)

RiskRiskRisk

Prevents

impact by

Eliminates

Input Validation

& Error Handling

Routines

(controls)

Disgruntled

Employee

(Threat)

Measures

probability of

damage to

Customer

Database

(asset)

Risk Protects

Prevents

information

revealed by

Exploits

Input Validation

& Error Handling

Routines

(controls)

DisgruntledDisgruntledDisgruntled

EmployeeEmployeeEmployee

(threat)(Threat)(threat)

CustomerCustomerCustomer

DatabaseDatabaseDatabase

(asset)(asset)(asset)

RiskRiskRisk

Figure 2: Example – Risk Exists

Assessing Information Security Risks in the Software Development Life Cycle

<www.cyberpartnership.org/SDLC
FULL.pdf>.

8. Open Web Application Security
Project (OWASP). “Top Ten Most
Critical Web Application Security
Vulnerabilities.” <www.owasp.org/
documentation/topten.html>.

9. The MITRE Corporation. “Common
Vulnerabilities and Exposures.”
<http://cve.mitre.org/>.

10. National Institute of Standards and
Technology. National Vulnerability
Database <http://nvd.nist.gov/>.

11. Lavenhar, Steven, and Gunnar Peter-
sen. “Architectural Risk Assessment.”
Cigital Inc. 2005 <https://buildsec
urityin.us-cert.gov/portal/article/
bestpractices/architectural_risk_
analysis/architectural_risk_assess
ment.xml>.

12. National Institute of Standards and
Technology (NIST). Risk Management
Guide for Information Technology
Systems. Special Paper 800-30, July
2002 <www.csrc.nist.gov/publica
tions/nistpubs/800-30/sp80030.
pdf>.

September 2006 www.stsc.hill.af.mil 25

About the Author

Douglas A. Ashbaugh,
CISSP, is a senior infor-
mation security analyst
for Enterprise Security
Services where he pro-
vides information securi-

ty analysis and remediation, policy and
procedure development, and security
awareness training to various clients.
Ashbaugh has a Bachelor of Science in
Engineering Operations from Iowa State
University. He served eight years in the
U.S. Air Force as an acquisition project
officer and has worked as a software
developer/analyst for the financial ser-
vices industry.

Enterprise Security Services
1508 JF Kennedy DR STE 201
Bellevue, NE 68005
Phone: (402) 292-8660
Fax: (800) 660-5329
E-mail:dashbaugh@sessolutions.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Dear CrossTalk Editor,
In the March 2006 issue, Yuri Chernak,
in his article Understanding the Logic of
System Testing, outlined a possible
methodological similarity between soft-
ware testing and mathematical logic. I
feel reality of software testing has a
close resemblance to the way that exper-
imental science works.

Some mathematical proofs devel-
oped in theory of software testing con-
cerning the inexistence of a constructive
criterion (i.e. algorithm) to derive the so-
called Ideal Test Suite, (the silver bullet
of system testing), state that the main
goal of testing is restricted to show the
presence of failures because testing can
never completely establish the correct-
ness of an arbitrary software system.

Skipping all formal aspects, these
theoretical results are well summarized:
Program testing can be used to show the
presence of bugs, but never to show
their absence!

Then the methodology of software
testing is well rooted in modus tollens
(Latin: mode that denies). Modus tollens
is the formal name for contrapositive
inference and can also be referred to as
denying the consequent – it is a valid
form of logical argument.

In fact, in experimental sciences, no
number of positive outcomes at the level
of experimental testing can confirm a
theory, but a single counter-instance
shows the scientific theory – from which
the implication is derived – to be false.

Then, falsification with experimental
implementation of modus tollens is just
as essential to software testing as it is to
scientific theories. Indeed, no number of
passed test suites can prove the correct-
ness of a program, but a single failed test
suite shows the program to be incorrect.

Effective testing requires an empiri-
cal frame of reference rather than a the-
oretical one: Software reality is more
about science than it is about computer
science.

Software testing, for mathematical
and theoretical reasons, is firmly set in
the framework of experimental sciences
and we need to see it in this perspective
if we want to increase the comprehen-
sion of methodology and practice of
software testing.

— Francesco Gagliardi
Department of Physical Sciences

University of Naples, Italy
francesco.gagliardi@na.infn.it

LETTER TO THE EDITOR

26 CROSSTALK The Journal of Defense Software Engineering September 2006

As individual systems and collective system-of-systems become more complex, software-intensive, safety-critical and costly, soft-
ware assurance becomes extremely important. Software assurance helps to reduce the likelihood of failure in terms of safety-
related mishaps, system unavailability, loss of mission accomplishment, or security breech of the system or its related assets.
Unfortunately, many program managers think they do not have the luxury of sufficient dollars and schedule to adequately
address software assurance in the early phases of the acquisition life cycle. One only has to quantify the cost of one system
failure or one system loss to comprehend its ultimate worth. Investing the resources in a software assurance program during
the design, code, and test phases of a software development program will significantly reduce the likelihood of costly mishaps,
failures, or system breeches during system operations and support.

When exposed to the quagmire of
buzzwords, definitions, and termi-

nology attached to most government sys-
tem acquisitions and software develop-
ment programs, there are many that apply
to software assurance. The ones that come
immediately to mind are return-on-invest-
ment, value added, designing it in, system integri-
ty, safe, reliable, available, secure, and risk man-
aged. While these words may be in the
vocabulary of some design teams, there is
usually a lack of passionate dedication in
implementation that is attached to a lack
of sufficient programmatic funding.
Unfortunately, software assurance is one
of those attributes of system design that
is often not an enforced criterion for
delivery, installation, or operation of com-
plex systems. While customers and stake-
holders are screaming for delivery of the
over-budget, behind-schedule items of
interest, software assurance is many times
reduced to a nice to have if there is remaining
time and money.

As our systems and system-of-systems
become more complex, mission-critical,
and safety-critical, it is definitely time for a
paradigm shift toward a commitment to
software assurance. Adequate funding and
passionate commitment are the first steps
toward a successful software assurance
goal. Closely coupled with the two is a
defined and planned process to be imple-
mented to increase the likelihood of soft-

ware assurance success. Contrary to some
development program philosophies, hope is
not an effective methodology to ensure this suc-
cess. Success will be based on a defined
and documented (stated) set of criterion
to be managed within each of the acquisi-
tion life cycle phases. In addition, to fully
understand the success criterion for soft-
ware assurance there has to be a complete
understanding of system failure [1]. This
will be explored further as the elements of
software assurance are defined and dis-
cussed. A successful software assurance
program can then be measured in terms of
cost savings, on-time deliveries, and soft-
ware that is unlikely to contribute to unin-
tended or undesired behavior. These
attributes of success are more likely to be
realized on a software development pro-
gram when the output of the software
assurance tasks actually minimizes the
number of logical or functional flaws in
the design architecture.

There are numerous methods or ways
to increase the likelihood of a successful
software assurance program for software
development projects. These methods can
be described as the essential elements of a
software assurance program (see sidebar).
Individually, each element can and will
make a contribution to success.
Collectively, they will provide a knockout
punch in ensuring the likelihood of soft-
ware assurance.

An Adequately Funded
Contract
If the Request for Proposal (RFP), the
proposal, and resulting contract are not
supportive of software assurance meth-
ods, the result is clearly gloom and doom for
the specialty engineer who is actually
tasked to perform the work. This is an
age-old problem and it definitely needs
modern-day rectification. Business as usual
seldom makes an impact on the engineer-
ing disciplines involved with software

assurance processes, tasks, and products.
Admitting we collectively have a historical
and contractual problem is the first step to
successful mitigation or control of the
issue. So, what can we do differently?

The Government Role
Government agencies need to get serious
about ensuring the likelihood of success
in this critical area. Modern development
programs contain software-intensive, safe-
ty-critical, highly reliable, secure, surviv-
able, and operationally effective require-
ments to go along with system-of-systems
integration. The government needs to
remain fully committed to ensure that
processes are contractually in place within
the software development life cycle to
produce software that is safe, secure, reli-
able, and available to perform as intended.
Boehm, Kind, and Turner in the 7 Myths
about Software Engineering That Impact Defense
Acquisitions [2] state that these processes
must be architected in. In addition, it must
be adequately proposed and funded.
Software assurance should be on the gov-
ernment checklist for RFP development.
The government should ask for it specifi-
cally to be included in the contract pro-
posal, and it should be part of the criteria
for proposal evaluation and source selec-
tion. The RFP should ask that software
assurance be adequately addressed in the
software development plan [3] to be deliv-
ered as part of the contract proposal.

The Contractor Role
Historically, contractors seldom address
software assurance adequately in proposal
preparation and conversely it is definitely
not sufficiently addressed in the cost vol-
ume of the proposal. This is due primari-
ly to program managers’ perception of worth
for software assurance as compared to the
more important, documented, and weight-
ed source selection criteria that are con-
tained in an RFP. If the government

Increasing the Likelihood of Success of a
Software Assurance Program

Steven F. Mattern
Apogen Technologies, Inc.

Essential Elements for
Software Assurance

• An Adequately Funded Contract
• Program Management Support
• Defined Common Terminology
• Specialty Engineering Support
• Risk Management
• A Defined Set of Processes, Tasks,

and Products
• Qualified Practitioners
• Defined and Applicable Metrics

Increasing the Likelihood of Success of a Software Assurance Program

September 2006 www.stsc.hill.af.mil 27

specifically requests that software assur-
ance be included in the software develop-
ment plan and the associated costs for its
implementation, the first step to success is
complete. Most contractors are willing, if
not able, to include software assurance in
their development processes if it is ade-
quately requested in the RFP and funded
in the contract.

Program Management
Support
Tightly coupled with an adequately funded
contract is program and project manage-
ment support. While a perfectly worded
and sufficiently funded contract will pro-
vide motivation to the program manager,
a demonstrated return on investment
helps to solidify the motivational factors
for supporting software assurance tasks.
Program managers must be able to assess
the engineering disciplines involved in
software assurance activities and obtain a
level of confidence that they are getting their
money’s worth with their implementation.
This money’s worth issue is due to the fact
that the assurance activities are imple-
mented to prevent bad things from occur-
ring (mishaps, security breeches, and mis-
sion failures). Therefore, if nothing bad
happens, did the program waste a lot of
resources combating a very unlikely set of
events? Most people can relate well to the
discussions several years ago surrounding
the Y2K issue and resources expended to
combat this very critical issue. But, when
the clock struck midnight and no major
catastrophe occurred, it set off a series of
discussions about whether we had wasted
our critical resources on a non-occurring
event. On the other hand, most will agree
that one single Y2K national catastrophe
would have cost more than we spent fight-
ing against it. A good software assurance
program will combat the likelihood of
software contributing to catastrophic
events.

The essential elements of a software
assurance activity that will help add to the
program manager’s confidence to expend
critical resources include risk management,
including the severity and likelihood of
failure; a defined set of processes, tasks and
products that make sense to the design and
test teams; qualified practitioners with ade-
quate and demonstrated capability; and
defined and applicable metrics – believable
measurements of progress and complete-
ness.

Defined Common Terminology
Historically, specific words have different
meanings for individual design teams or

stakeholders. The simple term software
assurance possesses any number of differ-
ent definitions among commercial con-
tractors, individual design teams, govern-
ment agencies, or international organiza-
tions. Government agencies and their sup-
porting contractors must begin speaking a
common language with defined and docu-
mented definitions. This is essential for
agencies like the Department of Defense
(DoD) to make the necessary strides in
the development of system-of-systems
that will be deployed, operated, and main-
tained by any or all of the armed services
(and some in commercial airspace or sim-
ilar environments). Software assurance
efforts can and will benefit if this occurs.

To demonstrate the problem, a search
was accomplished on the Internet using
Google. The objective of the search was
to find the best definition of software
assurance available. Looking through the
first 100 hits, the following were the only
two definitions worthy of consideration:
• Software Assurance. A planned pro-

gram whereby a customer prepays a
percentage of their license price for
future software releases [4].

• Software Assurance. A planned and
systematic set of activities that ensures
that software processes and products
conform to requirements, standards,
and procedures [5].
However, by knowing exactly where to

look, one can find the following defini-
tions from sources other than Google:
• Software Assurance. ... the level of

confidence that software is free from
vulnerabilities, either intentionally
designed into the software or acciden-
tally inserted at any time during its life
cycle, and that the software functions
in the intended matter [6].

• Software Assurance. Relates to the
level of confidence that software func-
tions as intended and is free of vulner-
abilities, either intentionally or unin-
tentionally designed or inserted as part
of the software [7].
In our Google search, the context of

the Microsoft Corporation software
assurance is prepaying for future applica-
tion updates, and NASA’s definition is
moving toward what we would expect it
to be (in 1993). But as we move forward
to 2006, we are still faced with either con-
flicting or dissimilar definitions. These
example definitions use the same two
words, in sometimes separate environ-
ments with demonstrated confusion a
possible net result.

For the purpose of this article, let us
define software assurance as a planned and
defined set of activities that ensures software is

complete in design to include safety, security, and
reliability. These activities ensure that the
software functions as intended, not per-
forming unintended or undesired func-
tions, and adheres to a predefined set of
standards that can be audited and verified.

Specialty Engineering Support
Specialty engineering is a general term
used for engineering other than the typical
hardware, software, or systems engineers
on a design project. It normally includes
system safety, reliability, logistics support,
human factors, maintainability, security,
and survivability. Unfortunately, these spe-
cialty engineers on most modern DoD
projects do not represent a unified and
integrated front that is needed to perform
the necessary tasks for the software assur-
ance activity. As described previously,
most members of a product team or func-
tional design team find it difficult to even
agree on a definition of what software
assurance is (or is not).

As depicted in Figure 1, software
assurance includes multiple specialty engi-
neering disciplines. Both the system and the
software elements of the discipline are
included as we know that system func-
tionality and the hardware and human
interface elements of the system are close-
ly coupled with the functionality of the
software.

Systems engineering is a key element to
the success of the software assurance
activity. It is here that the functional analy-
sis is accomplished and that safety, security,
and mission-critical functions are identified
and managed in the design process. In
addition, functional, physical, and logical
interfaces are identified and managed as
this is where system failure often initiates.
The lead systems engineer should be inte-
grating and managing the specialty engi-
neering disciplines and ensuring processes,
tasks, and products of each possess value.
The lead systems engineer will also ensure

Figure 1: Specialty Engineering Support

System and

Software Safety

System and

Software

Availability

System and

Software

Supportability

System

Survivability

System and

Software

Reliability

System and

Software Security

Software Assurance Wrapper

Systems Engineering Wrapper

Program Management Wrapper

Perform Functional

Analysis

Categorize Each Software

Function In Accordance

With Level Definitions

Provide Level Definitions

Allocations to the Software

Development Team

Identify Mishaps, Hazards,

And Failure Modes

Perform In-Depth Hazard

Software Causal Analysis

Identify Software-Specific

Safety Requirements to

Mitigate/Control Causes

Design, Code, and Test

Functions According to

Software Level Definitions

Test to Ensure Design

Successfully Incorporates

Safety Requirements

Performed by the System Safety

and Software System Safety Team

Performed by the Software

Development and Test Team

Traditional Software Safety Assurance Process

Traditional Software Safety Hazard Analysis Process

Each Process

Producing a

Safer System

Software Assurance

that the specialty engineers analyze the key
functions of interest with a focus on both
system failure and system success. They
will also ensure that there is no duplication
of effort and that each discipline is tied
into the risk management activities of the
program.

Risk Management
Program management is responsible for
ensuring that programmatic and technical
risk is identified, managed, and mitigated
to acceptable levels of risk on a develop-
ment program. To assist in this task, the
undesired events of each of the specialty
engineering disciplines must be identified
and assessed using the risk criticality
matrices that are common to risk manage-
ment methods.

Table 1 [8] provides an example of the
look and feel of a common criticality matrix.
The matrix is used in risk management to
categorize and prioritize resources based
upon the perception of risk. Risk, in this
context, can be in terms of safety, securi-
ty, availability, reliability, mission risk,
and/or supportability. This is all based
upon the potential of losing functional or
physical attributes of the system, and the
command and control the software has
over them.

Along with the criticality matrix is the
acceptance or management authority over
the risk identified. In the example, unre-
solved high-risk issues could only be
accepted at the Program Executive
Officer (PEO) level whereas project man-
agers would be able to accept unresolved
low-risk issues. The example matrix and
the identification of the corresponding
acceptance authority provided here are
examples only. Individual programs must
specifically define and tailor their own
matrices.

A Defined Set of Processes,
Tasks, and Products
The most important element of software
assurance resides in the defined processes,
tasks, and products that are produced and
implemented by both the software design
team and the specialty engineers. Without
a defined and approved process, the entire
software assurance effort reverts to an ad-
hoc effort at best.

The specific disciplines within special-
ty engineering have one thing in common:
they can all identify the undesired events that
they do not want to occur or experience.
In terms of safety, mishaps are the unde-
sired event; in terms of reliability, it is an
inoperable system; in terms of security, it
is a functional or physical breech leading
to system compromise. Regardless of the
discipline and the undesired event, there
are common tools and techniques to cate-
gorize the severity and likelihood of
occurrence, identify failure modes and
causes, and identify specific system (and
subsystem) related requirements to elimi-
nate, mitigate, or control these events or
conditions to acceptable levels of risk.
Because of this commonality and to sim-
plify the example, only safety will be used
within the context of the following dis-
cussion to illustrate the process. There are
two basic processes to develop safer soft-
ware: a software safety assurance process
and a software safety hazard analysis
process.

Software Safety Assurance Process
The Federal Aviation Administration
(FAA) has been using a software safety
assurance approach to develop safer soft-
ware for years. This process is predicated
on documented software level definitions
that define the requirements, design, code,
and test criteria to the software develop-

ment team (refer to the top half of Figure
2). According to the FAA, the software level
is based upon the contribution of software to
potential failure conditions as determined by the
system safety assessment process [9]. For the
FAA, it is the utilization of RTCA DO-
178B that provides the specific criteria for
software functionality Levels A through E
in descending order of consequence
severity (Note: RTCA organized in 1935
as the Radio Technical Commission for
Aeronautics, but it is now known as
RTCA Inc.). Level A functionality pos-
sesses catastrophic severity consequences
if it were to be lost, degraded, or if it
functioned out of time or out of
sequence. Each level possesses a lesser
consequence of failure. Level B function-
ality possessed critical consequences
whereas Level E functionality possessed
no safety impact should it fail. Once the
safety team defines the software level def-
inition of a specific function, the software
development teams implement the design,
code, and test criteria required for FAA
certification. This process has numerous
benefits, including the following:
• The identification and categorization

of functionality based upon safety
consequences.

• Increased levels of development and
test rigor for high-consequence func-
tionality.

• The functional and physical partition-
ing of high-consequence functionality
to reduce the likelihood of non-critical
functions contributing to catastrophic
or critical failure.

• The prioritization of critical resources
(dollars, schedule, manpower) based
upon sound risk management princi-
ples.

• Safer software and thus safer systems.

Software Safety Hazard
Analysis Process
The DoD has relied on a hazard analysis
process to develop safer software (refer to
bottom half of Figure 2). This approach
relied on the identification of system-level
mishaps and their corresponding hazards.
Mishaps and hazards are then categorized
in terms of severity and likelihood of
occurrence. By analyzing snapshots of a
design as it matures, specific hardware,
software, and human error causal factors
are identified. Once these causal factors
are identified in the context of the hazard
initiation and failure pathway to potential
mishap, then specific safety-related soft-
ware requirements can be identified to
mitigate or control the hazard to accept-
able levels of safety risk. These safety-

28 CROSSTALK The Journal of Defense Software Engineering September 2006

Table 1: Example of a Criticality Matrix

Risk Management – Criticality Matrix

Severity

Probability Catastrophic Critical Marginal Negligible

Frequent 1 3 8 15

Probable 2 5 11 16

Occasional 4 7 12 18

Remote 6 10 14 19

Improbable 9 13 17 20

1-5 High Risk Accepted — PEO Level

6-12 Medium Risk Accepted — Program Manager Level

13-18 Low Risk Accepted — Project Manager Level

19-20 Very Low Risk Accepted — Systems Engineer Level

Table 1: Example of a Criticality Matrix [8]

Increasing the Likelihood of Success of a Software Assurance Program

related requirements can be in the form of
specific design architecture changes, or
the addition of fault detection, fault toler-
ance, or fault recovery. These require-
ments are traced through the design
implementation, the coded product, and
then to the test and verification efforts.
Benefits of this approach include the fol-
lowing:
• Safety-critical functions can be graph-

ically modeled for ease of in-depth
safety analysis [10].

• The causes of failure can be identified
and mitigated at their specific initia-
tion points.

• Failure of software functionality is
analyzed in context with its hardware
and human interfaces.

• Fault detection, isolation, annuncia-
tion, tolerance, and recovery can be
more precise in its design implementa-
tion.

• Safer software, thus a safer system.

Integrating the Two Processes
The system safety community is begin-
ning to realize that each of the two
processes does indeed result in safer soft-
ware. But, to obtain the safest software
possible, modern-day developments need
to integrate both the software safety
assurance and the software safety hazard
analysis processes into the software devel-
opment and test activities [11].

Safety is used in this example of
processes because the software safety
community may have more mature meth-
ods, tools, and techniques to address soft-
ware assurance. Because the software
safety community processes mature tools
and techniques, each specialty engineer-
ing discipline should closely evaluate
what the safety community is using as it
would either directly apply or could be
modified slightly to yield exceptional
results.

The Tasks and the Products
The defined processes for software assur-
ance represents the what that needs to be
accomplished. The specific how to tasks to
fulfill the process are defined and imple-
mented by individual teams. There are
many ways to accomplish these tasks as
long as the process is being followed.
Specific tools such as Fault Tree Analysis
and Failure Modes and Effects Analysis
are common to the industry and provide
the means to completely understand the
context of failure. In addition, it is impor-
tant that the tasks accomplished produce
the engineering evidence and audit trail
products for either system certification or
customer acceptance.

Qualified Practitioners
Specialty engineering is not a profession
where body count is the most important fac-
tor. One good, trained, qualified per-
former is much better than three
untrained, struggling practitioners.
Contractors have a bad habit of putting
engineers with dwindling contractual cov-
erage into positions with specialty engi-
neering just to keep them employed. This
is far from optimal and should not be
accepted by the stakeholder of the con-
tract.

Also, a lesson learned (and re-learned
over and over again) is associated with the
original designer being tasked to do the
safety or reliability analysis due to the lack
of a qualified person being on staff. To
put it bluntly, asking the designer to per-
form failure analysis on their own design
is like asking a brand new mother to iden-
tify and document how ugly her new baby
is. Just as new mothers only see the beau-
ty of their new child, design engineers
only see the natural beauty of their design.
Asking them to see or identify failure
modes and conditions (ugliness) of their
design will historically not yield the true
results required for a high-fidelity failure
analysis.

The bottom line here is that specialty
engineers (system safety, reliability, vulner-
ability, security, etc.) are trained in the art
and science of systematically breaking the
system down to identify the failure condi-
tions and their contributing failure path-
ways and initiators. They are trained to
categorize and prioritize risk based upon
severity and likelihood of occurrence in
order to facilitate wise decision making
from management and design engineering
in risk mitigation and control. These
experts are the individuals that should be
doing the work.

Defined and Applicable
Metrics
In order to confirm or obtain confidence
in a defined software assurance process,
there must be applicable metrics that
record the score of how well we are doing.
Applicable metrics provide the technical
and managerial decision makers with cer-
tainty that the resources expended
(upfront in the development process) are
actually providing the necessary value to
the development effort. In addition, these
provide the ultimate stakeholder or cus-
tomer with the confidence that the system
is meeting its assurance requirements or
objectives.

Here again, it is important to have
qualified individuals for any given project
who are adept at establishing credible and
verifiable metrics. To support this
premise, one must consider that many
customers desire or require quantified (or
quantifiable) metrics that are supported by
engineering evidences and artifacts. It is
extremely important to have high-fidelity,
quantified results that can be supported
and verified by a repeatable process.

On a recent project, my company used
a specific tool to provide a quantifiable set
of metrics to the customer. This tool is
modifiable whereby the metric outputs are
based upon the inputs of specific assess-
ment criterion. By evaluating the number
and types of findings, the level of risk mit-
igations and controls, and the overall fault
tolerance of the system, a specific output
score is generated. While this effort was
directed at one phase of the acquisition
life cycle, tools like this can be modifiable
and used in each of the software life cycle
phases.

Regardless of the tools or metrics
used, they should include ways to measure
each functional discipline of the software

September 2006 www.stsc.hill.af.mil 29

Figure 2: System Safety and Software Safety Assurance Processes

System and

Software Safety

System and

Software

Availability

System and

Software

Supportability

System

Survivability

System and

Software

Reliability

System and

Software Security

Software Assurance Wrapper

Systems Engineering Wrapper

Program Management Wrapper

Perform Functional

Analysis

Categorize Each Software

Function In Accordance

With Level Definitions

Provide Level Definitions

Allocations to the Software

Development Team

Identify Mishaps, Hazards,

And Failure Modes

Perform In-Depth Hazard

Software Causal Analysis

Identify Software-Specific

Safety Requirements to

Mitigate/Control Causes

Design, Code, and Test

Functions According to

Software Level Definitions

Test to Ensure Design

Successfully Incorporates

Safety Requirements

Performed by the System Safety

and Software System Safety Team

Performed by the Software

Development and Test Team

Traditional Software Safety Assurance Process

Traditional Software Safety Hazard Analysis Process

Each Process

Producing a

Safer System

Software Assurance

30 CROSSTALK The Journal of Defense Software Engineering September 2006

assurance activity. That is, safety, security,
reliability, etc. should all be assessed, mea-
sured, and scored for decision-making and
auditing purposes.

Summary
Software assurance is a maturing discipline
that is vital for complex software develop-
ment projects that possess safety, security,
reliability, and mission critical attributes.
Although the essential elements for a soft-
ware assurance program presented here are
described in a basic abstract format, each
element should be further defined, expand-
ed, and refined for individual DoD soft-
ware-development projects. Each element
presented is important to the success for-
mula. However, if one element of this for-
mula is absent, do not let that hinder the
inclusion of the remaining elements. By
implementing these elements, program,
project, and technical managers can increase
the likelihood of having a defendable and
high fidelity software assurance program.u

References
1. Raheja, Dev G. Assurance Technolo-

gies – Principles and Practices. Mc-
Graw-Hill, 1991.

2. Boehm, B., Peter Kind, and Richard
Turner. “Risky Business; 7 Myths
about Software Engineering That
Impact Defense Acquisitions.” Project
Manager (May-June 2002).

3. Rosenberg, Linda H. “Lessons
Learned in Software Quality
Assurance.” Software Tech News 6.2
(Dec. 2002).

4. Semilof, Margie. “Microsoft Licensing:
A Special Report: Licensing 6.0 and

Software Assurance: Who Should
Renew?” 16 Sept. 2003 <http://search
winit.techtarget.com/originalContent/
0,289142,sid1_gci927989,00.html>.

5. National Aeronautics and Space
Administration. “Software Assurance
Standard: NASA-STD-2201-93.” 1992.

6. Committee on National Information
Security Systems. “National Infor-
mation Assurance Glossary.” Instruc-
tion No. 4009, 2006 <www.cnss.gov/
Assets/pdf/cussi_4009.pdf>.

7. Department of Defense (DoD).
“DoD Software Assurance Initiative.”
13 Sept. 2005 <https://acc.dau.mil/
CommunityBrowser.aspk?id=25749>.

8. Mattern, Steven F. “Introduction to
Risk Management.” System Safety
Management Course. University of
Washington, Seattle, WA. Mar. 2006.

9. RTCA/DO-178B. “Software Consid-
erations in Airborne Systems and
Equipment Certification. Require-
ments and Technical Concepts for
Aviation.” 1 Dec., 1992.

10. Mattern, S, E. Elcock, and E. Larsen.
“IMPACT – A New Tool for the Soft-
ware Safety Engineering Toolbox,
Integrated Message and Process Anal-
ysis Control Technique.” Proc. 20th
International System Safety Society
Conference Denver, CO, 2002.

11. Mattern, Steven F. “Comparing
Software Safety Engineering with
Software Integrity Methods and
Techniques The Implications to
Future.” Department of Defense
Acquisitions, 22nd International
System Safety Society Proceedings.
Providence, RI, 2004.

About the Author

Steven F. Mattern is
vice president with Apo-
gen Technologies, in
McLean, VA. He man-
ages the Software and
Systems Analysis Divi-

sion that specializes in software develop-
ment and software assurance technolo-
gies. Engineers in his division have been
performing software assurance-related
tasks for more than 12 years for both
government and commercial clients.
Mattern is a Fellow member of the
International System Safety Society and
holds the position of Director of
Education and Professional Develop-
ment for the Society. He is the integrat-
ing author of the Tri-Services Software
System Safety Handbook, and currently
teaches the System Safety Management
and Software Safety Engineering
Courses at the University of Washing-
ton. Mattern has a Bachelor of Science
degree in Industrial/Electronic Tech-
nology from the University of Wyoming
and a Master of Arts in Computer
Resource Management from Webster
University.

Apogen Technologies, Inc.
1308 Bellevue BLVD N
Bellevue, NE 68005
Phone: (402) 502-3657
E-mail: steve.mattern@apogen.com

BACKTALK

September 2006 www.stsc.hill.af.mil 31

First things first: In my July 2006 BackTalk article, “e-
Dorado: The Lost Centric City of Information,” the Office

of the Secretary of Defense (OSD) net-centricity quote and ref-
erence were incorrect. The word censors should have been sensors
and the reference should have been the OSD Net-Centric
Checklist [1]. Ironically, only one astute reader caught the faux
pas. In the wake of the Patriot Act and the National Security
Agency’s warrantless surveillance controversy, can I
presume most of you thought censorship was part of
net-centric warfare?

With quality on my mind, let’s move on to this
issue’s theme – Software Assurance. The DoD relates
software assurance to the level of confidence that software
functions as intended and is free of vulnerabilities ... [2].
NASA adds that software assurance is a planned and
systematic set of activities that ensures that software processes
and products conform to requirements, standards, and proce-
dures [3]. The essence of software assurance is pre-
dictability, trustworthiness, and conformance.
Trustworthiness and process conformance receive
plenty of press, so I will leave them to the security
and process enthusiasts and focus on predictability.

With regard to predictability, the DoD wants soft-
ware that is accurate (functions as intended) and pre-
cise (with confidence). I know, many readers are say-
ing, “Gary, accuracy and precision are synonymous.”
Well, maybe in English 101, but not in science, engi-
neering, and, as it turns out, marksmanship.

Several years ago, my son, Matthew, decided to
obtain his rifle merit badge. After a safety lecture, we
proceeded to the gun range where shooters sit side-
by-side, taking 10 shots at individual targets similar to
the target in Figure 1. Matthew was
somewhat timid, having never handled
a gun, so I agreed to shoot with him to
ease his doubts.

We methodically fired 10 rounds,
waited for the range to clear, and then
marched to our targets to check our
results. Concerned about my son’s tally
I watched as his shoulders slumped
and his head dropped. This was not a
good sign. I looked over his shoulder.
His target looked exactly like Figure 1
– clean, no bullet holes, not even one!
While considering how to handle the situation, I glanced at my
target, which looked like Figure 2, and there was my answer.

Instead of 10 bullet holes, my target had 20. Matthew shot at
my target and not his own. I shared my discovery with Matthew
and his shoulders went back, his head snapped up, and later that
day he earned the merit badge.

Although I could not differentiate my bullet holes from my
son’s, I did find the target pattern intriguing. Two distinct pat-
terns appeared on the target. Ten holes were grouped around the
center bull’s-eye and slightly high. The other 10 holes are tightly
grouped below and left of the center bull’s-eye. In subsequent
rounds, we found Matthew’s targets to be tightly grouped and
below center-left. I deduced that Matthew’s shots were precise

(his shots produced similar results – tightly grouped holes), but
not accurate (his shots were below and left of the center bull’s-
eye) and my shots were more accurate (around the center bull’s-
eye) but less precise (not as tightly grouped).

Figure 3 is a statistical view of accuracy versus precision. In
software development terms, the “Actual Target” in Figure 3 rep-
resents the customer’s bona fide requirements. The statistical

depiction illustrates that you can be precise but not
accurate, accurate but not precise or both. The DoD
wants both – emulating user bona fide requirements
(accuracy) with little variance over time (precision).

Accuracy requires that developers discern true refer-
ence values (requirements). However, the capricious
nature of software requirements makes that discern-
ment difficult, requiring focus, patience, and clear com-
munication.

That reminds me of the story of the project man-
ager who was late for a design review. Driving to the
review, he tried to save time by slowing down and
rolling through stop signs. A police officer stopped the
project manager and cited him for failure to stop at a
stop sign. Being a project manager, he naturally felt he
was right and tried to convince the officer that he did
slow down at each light. The officer replied, “But you
did not stop.” The project manager continued his plea,
explaining that he slowed down and looked both ways.
The officer replied, “But you did not stop.” He
explained that he slowed down and no one was hurt.
The officer replied, “But you did not stop.”

Rather than cutting his losses, the project
manager, in typical project manager style, pressed the
officer to the limit to avoid the ticket. Finally frustrated,

the officer pulled the project manager
from the car and started beating him
with his baton. The project manager
started to scream and yelled to the
officer, “…stop, please stop!” To
which the officer replied, “Do you
want me to stop or just slow down?”

What’s my point? Aim at the right
target then worry about precision, beat
your project manager occasionally, and
know when to stop.

— Gary A. Petersen
Shim Enterprises, Inc.

gary.petersen@shiminc.com

References
1. Office of the Assistant Secretary of Defense for Networks

and Information Integration/Department of Defense Chief
Information Officer. “Net-Centric Checklist 2.1.3.” 12 May,
2004.

2. Department of Defense Software Assurance Initiative. 13
Sept. 2005.

3. National Aeronautics and Space Administration. “Software
Assurance Standard.” NASA-STD-2201-93. 10 Nov. 2002.

Ready, Fire, Aim!

Figure 2

Figure 1

Probability

Density

Actual Target

Accuracy

Value

Precision

Figure 3

Figure 2

Figure 1

Probability

Density

Actual Target

Accuracy

Value

Precision

Figure 3

Figure 2

Figure 1

Probability

Density

Actual Target

Accuracy

Value

Precision

Figure 3

Figure 1: Individual
Target

Figure 2: Twenty
Bullet Holes

Figure 3: Accuracy Versus Precision

CrossTalk/517 SMXS/MDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Software Assurance
	Security in the Software Life Cycle
	When Computers Fly, It Has to Be Right:Using SPARK for Flight Control ofSmall Unmanned Aerial Vehicles
	Application and Evaluation of Built-In-Test (BIT)Techniques in Building Safe Systems
	Assessing Information Security Risks in the Software Development Life Cycle
	Increasing the Likelihood of Success of a Software Assurance Program

	Web Sites
	Coming Events
	Letter to the Editor
	SSTC 2007
	BackTalk
	Back Cover

